HadCRUT5
Visualize the HadCRUT5 temperature, a gridded dataset of global historical surface temperature anomalies relative to a 1961-1990 reference period.
https://github.com/madrisan/HadCRUT5
Category: Climate Change
Sub Category: Climate Data Access and Visualization
Keywords
global-warming hadcrut5 netcdf4 plot
Last synced: 20 minutes ago
JSON representation
Repository metadata
Visualize the HadCRUT5 temperature datasets
- Host: GitHub
- URL: https://github.com/madrisan/HadCRUT5
- Owner: madrisan
- License: gpl-3.0
- Created: 2021-01-02T17:18:23.000Z (over 4 years ago)
- Default Branch: main
- Last Pushed: 2025-04-23T20:51:21.000Z (4 days ago)
- Last Synced: 2025-04-26T14:42:01.576Z (1 day ago)
- Topics: global-warming, hadcrut5, netcdf4, plot
- Language: Python
- Homepage:
- Size: 8.75 MB
- Stars: 17
- Watchers: 2
- Forks: 3
- Open Issues: 0
- Releases: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
README.md
Visualize the HadCRUT5 temperature datasets
HadCRUT5 is a gridded dataset of global historical surface temperature anomalies relative to a 1961-1990 reference period.
Data are available for each month from January 1850 onwards, on a 5 degree grid and as global and regional average time series.
The dataset is a collaborative product of the Met Office Hadley Centre and the Climatic Research Unit at the University of East Anglia.The current version of HadCRUT5 is HadCRUT.5.0.2.0, available from the download page.
— source: HadCRUT5 Index
A detailed description of the datasets can be found in the
Answers to Frequently Asked Questions
.
List of the datafiles that are loaded by the Python script:
HadCRUT.5.0.2.0.analysis.summary_series.global.annual.nc
HadCRUT.5.0.2.0.analysis.summary_series.northern_hemisphere.annual.nc
HadCRUT.5.0.2.0.analysis.summary_series.southern_hemisphere.annual.nc
HadCRUT5 data are downloaded from: https://www.metoffice.gov.uk/hadobs/hadcrut5/data/HadCRUT.5.0.2.0/download.html
Plot of the temperature anomalies
The following plots have been generated by the Python scripts hadcrut5_plot.py
and hadcrut5_bars.py
.
They require the Python libraries: Matplotlib, netCDF4, NumPy, and Requests.
If Python and the required libraries are not installed on your system, you can simply
install uv
and run the commands listed below prefixed
with uv run
. For example uv run ./hadcrut5_plot.py
.
hadcrut5_plot.py — Script usage
$ ./hadcrut5_plot.py --help
usage: hadcrut5_plot.py [-h] [-f OUTFILE] [-p PERIOD] [-m SMOOTHER] [-g] [-n] [-s] [-a ANNOTATE] [-v]
Parse and plot the HadCRUT5 temperature datasets v2024.1 (stable)
Copyright (C) 2020-2024 Davide Madrisan <[email protected]>
License: GNU General Public License v3.0
options:
-h, --help show this help message and exit
-a ANNOTATE, --annotate ANNOTATE
add temperature annotations (0: no annotations, 1 (default): bottom only, 2: all ones
-f OUTFILE, --outfile OUTFILE
name of the output PNG file
-g, --global plot the Global Temperatures
-m SMOOTHER, --smoother SMOOTHER
make the lines smoother by using N-year means
-n, --northern Northern Hemisphere Temperatures
-p PERIOD, --period PERIOD
show anomalies related to 1961-1990 (default), 1850-1900, or 1880-1920
-s, --southern Southern Hemisphere Temperatures
-t TIME_SERIES, --time-series TIME_SERIES
do plot the "annual" time series (default) or the "monthly" one
-v, --verbose make the operation more talkative
examples:
hadcrut5_plot.py
hadcrut5_plot.py --global --annotate=2
hadcrut5_plot.py --period "1850-1900"
hadcrut5_plot.py --period "1850-1900" --smoother 5
hadcrut5_plot.py --period "1880-1920" --outfile HadCRUT5-1880-1920.png
hadcrut5_plot.py --period "1880-1920" --time-series monthly --global
hadcrut5_plot.py
select the period 1961-90
by default but supports (see the command-line switch--period
) two other base periods found in the literature: 1850-1900
, and 1880-1920
.
$ ./hadcrut5_plot.py --annotate=2 --outfile plots/HadCRUT5-1961-1990.png
$ ./hadcrut5_plot.py --annotate=2 --period "1850-1900" --outfile plots/HadCRUT5-1850-1900.png
$ ./hadcrut5_plot.py --annotate=2 --period "1880-1920" --outfile plots/HadCRUT5-1880-1920.png
Plots using the N-year mean data
By adding the command-line option --smoother N
you can create the same three plots, but using the N-year means data.
For instance --smoother 5
will get you a better idea of the trend lines.
Image generated for the anomalies related to the period 1880-1920
.
$ ./hadcrut5_plot.py --period "1880-1920" --smoother 5 --outfile plots/HadCRUT5-1880-1920-smoother.png
Plots using the monthly mean data
The command-line option --time-series monthly
selects the monthly HadCRUT5 datasets (by default the dataset providing the annual means is selected).
Image displying the monthly anomalies related to the period 1880-1920
, for the global temperatures only.
$ ./hadcrut5_plot.py --global --period "1880-1920" --time-series monthly
hadcrut5_bars.py — Script usage
usage: hadcrut5_bars.py [-h] [-f OUTFILE] [-p PERIOD] [-v]
Parse and plot the HadCRUT5 temperature datasets v2024.1 (stable)
Copyright (C) 2020-2024 Davide Madrisan <[email protected]>
License: GNU General Public License v3.0
options:
-h, --help show this help message and exit
-f OUTFILE, --outfile OUTFILE
name of the output PNG file
-p PERIOD, --period PERIOD
show anomalies related to 1961-1990 (default), 1850-1900, or 1880-1920
-v, --verbose make the operation more talkative
examples:
hadcrut5_bars.py
hadcrut5_bars.py --period "1850-1900"
hadcrut5_bars.py --period "1880-1920"
hadcrut5_bars.py --outfile HadCRUT5-global.png
The image for to the anomalies related to the period 1880-1920
follows.
$ ./hadcrut5_bars.py --period "1880-1920" --outfile plots/HadCRUT5-global-1880-1920.png
hadcrut5_stripe.py — Script usage
usage: hadcrut5_stripe.py [-h] [-f OUTFILE] [-r {global,northern,southern}] [-v] [-l]
Parse and plot a stripe image of the HadCRUT5 temperature datasets v2024.1 (stable)
Copyright (C) 2020-2024 Davide Madrisan <[email protected]>
License: GNU General Public License v3.0
options:
-h, --help show this help message and exit
-f OUTFILE, --outfile OUTFILE
name of the output PNG file
-r {global,northern,southern}, --region {global,northern,southern}
select between Global (default), Northern, or Southern Temperatures
-v, --verbose make the operation more talkative
-l, --no-labels do not disply the header and footer labels
examples:
hadcrut5_stripe.py
hadcrut5_stripe.py --no-labels --region northern
hadcrut5_stripe.py --region global --outfile HadCRUT5-stripe-global.png
Below is a generated striped image for global anomalies.
$ ./hadcrut5_stripe.py --region global
License
The Python code of this project is released under the GPL-3.0 license.
The graphics have a CC-BY4.0 license, so can be used for any purpose as long as credit is given to Madrisan Davide and a link is provided to this website.
Owner metadata
- Name: Davide Madrisan
- Login: madrisan
- Email:
- Kind: user
- Description: Born at 327ppm. Maths and music as a cultural background. Open source and Linux enthusiast since 1996. Software Engineer (CI/CD) @ Qwant.com
- Website: https://madrisan.github.io
- Location: Nice, France
- Twitter:
- Company: @Qwant
- Icon url: https://avatars.githubusercontent.com/u/3075435?v=4
- Repositories: 28
- Last ynced at: 2023-04-04T17:36:20.899Z
- Profile URL: https://github.com/madrisan
GitHub Events
Total
- Watch event: 2
- Push event: 24
- Pull request event: 4
- Create event: 2
Last Year
- Watch event: 2
- Push event: 24
- Pull request event: 4
- Create event: 2
Committers metadata
Last synced: 7 days ago
Total Commits: 125
Total Committers: 2
Avg Commits per committer: 62.5
Development Distribution Score (DDS): 0.008
Commits in past year: 28
Committers in past year: 1
Avg Commits per committer in past year: 28.0
Development Distribution Score (DDS) in past year: 0.0
Name | Commits | |
---|---|---|
Davide Madrisan | d****n@g****m | 124 |
Davide Madrisan | d****n@q****m | 1 |
Committer domains:
- qwant.com: 1
Issue and Pull Request metadata
Last synced: 1 day ago
Total issues: 0
Total pull requests: 5
Average time to close issues: N/A
Average time to close pull requests: 4 days
Total issue authors: 0
Total pull request authors: 1
Average comments per issue: 0
Average comments per pull request: 0.0
Merged pull request: 5
Bot issues: 0
Bot pull requests: 0
Past year issues: 0
Past year pull requests: 2
Past year average time to close issues: N/A
Past year average time to close pull requests: about 17 hours
Past year issue authors: 0
Past year pull request authors: 1
Past year average comments per issue: 0
Past year average comments per pull request: 0.0
Past year merged pull request: 2
Past year bot issues: 0
Past year bot pull requests: 0
Top Issue Authors
Top Pull Request Authors
- madrisan (5)
Top Issue Labels
Top Pull Request Labels
- enhancement (2)
Score: 3.5263605246161616