rsofun

R framework for site-scale simulations of ecosystem processes.
https://github.com/geco-bern/rsofun

Category: Biosphere
Sub Category: Plants and Vegetation

Keywords

dgvm growth modeling p-model simulation vegetation-dynamics

Keywords from Contributors

acclimation optimality-theory photosynthesis

Last synced: about 7 hours ago
JSON representation

Repository metadata

Implements the Simulating Optimal FUNctioning framework for site-scale simulations of ecosystem processes, including model calibration. It contains Fortran 90 modules for the P-model, SPLASH, and BiomeE models.

README.md

R build status
codecov
DOI

rsofun

An R Simulating Optimal FUNctioning (RSOFUN) framework for site-scale simulations of ecosystem processes. The package contains the following modules:

  • P-model for leaf-level acclimation of photosynthesis from Stocker et al. (2019).
  • SPLASH for bioclimatic variables, including the surface radiation budget and the soil water balance from Davis et al. (2017).
  • BiomeE for comprehensive simulations of ecosystem carbon and water cycling, tree growth, and tree cohort-explicit forest dynamics following the Perfect Plasticity Approximation, from Weng et al., (2015).

Installation

Stable release

To install the current stable release use a CRAN repository:

install.packages("rsofun")
library("rsofun")

Development release

To install the latest development release of the package run the following commands to install rsofun directly from GitHub:

if(!require(remotes)){install.packages("remotes")}
remotes::install_github("geco-bern/rsofun")
library("rsofun")

NOTE: Installing from GitHub requires compilation of Fortran and C source code contained in {rsofun}. To enable compiling source code, install Rtools on Windows, or Xcode and the GNU Fortran compiler on Mac (see also 'Mandatory tools' here). On Linux, the gfortran compiler is usually installed already.

Vignettes are not rendered by default, if you want to include additional documentation please use:

if(!require(remotes)){install.packages("remotes")}
remotes::install_github("geco-bern/rsofun", build_vignettes = TRUE)
library("rsofun")

From source

Assuming rsofun is the location of the source directory, on can build the R package (with extension .tar.gz) from the command line using:

R CMD build --no-manual --no-build-vignettes rsofun

The package can then be installed with:

R CMD INSTALL -c --preclean  *.tar.gz

, where the star * can be replaced by the name of the package produced at the previous step.

Use

Below sections show the ease of use of the package in terms of model parameter specification and running both a single run or optimizing the parameters for a given site (or multiple sites). For an in depth discussion we refer to the vignettes.

Running model

With all data prepared we can run the P-model using runread_pmodel_f(). This function takes the nested data structure and runs the model site by site, returning nested model output results matching the input drivers.

# define model parameter values from previous
# work
params_modl <- list(
    kphio              = 0.04998,    # setup ORG in Stocker et al. 2020 GMD
    kphio_par_a        = 0.0,        # set to zero to disable temperature-dependence of kphio
    kphio_par_b        = 1.0,
    soilm_thetastar    = 0.6 * 240,  # to recover old setup with soil moisture stress
    soilm_betao        = 0.0,
    beta_unitcostratio = 146.0,
    rd_to_vcmax        = 0.014,      # value from Atkin et al. 2015 for C3 herbaceous
    tau_acclim         = 30.0,
    kc_jmax            = 0.41
  )

# run the model for these parameters
output <- rsofun::runread_pmodel_f(
  p_model_drivers,
  par = params_modl
  )

Parameter optimization

To optimize new parameters based upon driver data and a validation dataset we must first specify an optimization strategy and settings, as well as a cost function and parameter ranges.

settings <- list(
  method              = "GenSA",
  metric              = cost_rmse_pmodel,
  control = list(
    maxit = 100),
  par = list(
    kphio = list(lower=0.02, upper=0.2, init = 0.05)
    )
)

rsofun supports both optimization using the GenSA and BayesianTools packages. The above statement provides settings for a GenSA optimization approach. For this example the maximum number of iterations is kept artificially low. In a real scenario you will have to increase this value orders of magnitude. Keep in mind that optimization routines rely on a cost function, which, depending on its structure influences parameter selection. A limited set of cost functions is provided but the model structure is transparent and custom cost functions can be easily written. More details can be found in the "Parameter calibration and cost functions" vignette.

In addition starting values and ranges are provided for the free parameters in the model. Free parameters include: parameters for the quantum yield efficiency kphio, kphio_par_a and kphio_par_b, soil moisture stress parameters soilm_thetastar and soilm_betao, and also beta_unitcostratio, rd_to_vcmax, tau_acclim and kc_jmax (see ?runread_pmodel_f). Be mindful that with newer versions of rsofun additional parameters might be introduced, so re-check vignettes and function documentation when updating existing code.

With all settings defined the optimization function calib_sofun() can be called with driver data and observations specified. Extra arguments for the cost function (like what variable should be used as target to compute the root mean squared error (RMSE) and previous values for the parameters that aren't calibrated, which are needed to run the P-model).

# calibrate the model and optimize free parameters
pars <- calib_sofun(
    drivers = p_model_drivers,  
    obs = p_model_validation,
    settings = settings,
    # extra arguments passed to the cost function:
    targets = "gpp",             # define target variable GPP
    par_fixed = params_modl[-1]  # fix non-calibrated parameters to previous 
                                 # values, removing kphio
  )

Data and code for model documentation paper (Paredes et al., in rev.)

Versioned releases of this repository are deposited on Zenodo (see badge at the top of the README file). Code to reproduce the analysis and plots presented here is contained in this repository (subdirectory analysis/) and is demonstrated on the model documentation website (https://geco-bern.github.io/rsofun/, article ‘Sensitivity analysis and calibration interpretation’).

The model forcing and evaluation data is based on the publicly available FLUXNET2015 data for the site FR-Pue, prepared by FluxDataKit v3.4.2 (10.5281/zenodo.14808331), taken here as a subset of the originally published data for years 2007-2012. It is accessible through the {rsofun} R package and contained as part of this repository (subdirectory data/) as CSV and as files. Outputs of the analysis presented here are archived in the analysis/paper_results_files/ subfolder.

The model documentation paper is currently under review.
A preprint is available at: https://www.biorxiv.org/content/10.1101/2023.11.24.568574v3

References

Stocker, B. D., Wang, H., Smith, N. G., Harrison, S. P., Keenan, T. F., Sandoval, D., Davis, T., and Prentice, I. C.: P-model v1.0: an optimality-based light use efficiency model for simulating ecosystem gross primary production, Geosci. Model Dev., 13, 1545–1581, https://doi.org/10.5194/gmd-13-1545-2020, 2020.

Davis, T. W., Prentice, I. C., Stocker, B. D., Thomas, R. T., Whitley, R. J., Wang, H., Evans, B. J., Gallego-Sala, A. V., Sykes, M. T., and Cramer, W.: Simple process-led algorithms for simulating habitats (SPLASH v.1.0): robust indices of radiation, evapotranspiration and plant-available moisture, Geoscientific Model Development, 10, 689–708, doi:10.5194/gmd-10-689-2017, URL http: //www.geosci-model-dev.net/10/689/2017/, 2017.

Weng, E. S., Malyshev, S., Lichstein, J. W., Farrior, C. E., Dybzinski, R., Zhang, T., Shevliakova, E., and Pacala, S. W.: Scaling from individual trees to forests in an Earth system modeling framework using a mathematically tractable model of height-structured competition, Biogeosciences, 12, 2655–2694, https://doi.org/10.5194/bg-12-2655-2015, 2015.

Acknowledgements

The {rsofun} is part of the LEMONTREE project and funded by Schmidt Futures and under the umbrella of the Virtual Earth System Research Institute (VESRI).

Citation (CITATION.cff)

cff-version: 1.2.0
message: >-
  If you use this software, please cite it using the
  metadata from this file.
  The corresponding documentation paper can be found at egusphere-2025-1260
title: 'rsofun: The P-Model and BiomeE Modelling Framework'
type: software
license: GPL-3.0-only
repository: 'http://dx.doi.org/10.32614/CRAN.package.rsofun'
repository-code: 'https://github.com/fabern/zenodo_sandbox'
repository-artifact: 'https://doi.org/10.5281/zenodo.3712928'
url: 'https://doi.org/10.5281/zenodo.3712928'
contact:
- affiliation: University Bern
  family-names: Stocker
  given-names: Benjamin David
  orcid: https://orcid.org/0000-0003-2697-9096
  email: benjamin.stocker@gmail.com
authors:
- affiliation: University Bern
  family-names: Stocker
  given-names: Benjamin David
  orcid: https://orcid.org/0000-0003-2697-9096
- affiliation: '@bluegreen-labs'
  family-names: Hufkens
  given-names: Koen
  orcid: https://orcid.org/0000-0002-5070-8109
- affiliation: University Bern
  family-names: "Ar\xE1n Paredes"
  given-names: Josefa
  orcid: https://orcid.org/0009-0006-7176-2311
- affiliation: University Bern
  family-names: Bernhard
  given-names: Fabian
  orcid: https://orcid.org/0000-0003-0338-0961
- affiliation: University Bern
  family-names: Marcadella
  given-names: Mayeul
  orcid: https://orcid.org/0000-0001-8555-3808
keywords:
- dgvm
- growth
- modeling
- p-model
- simulation
- vegetation-dynamics
abstract: '<h1>rsofun</h1>

  <p>An R package for Simulating Optimal FUNctioning (rsofun). A model for site-scale
  simulations of ecosystem processes. The package contains the following modules:</p>

  <p>- P-model for leaf-level acclimation of photosynthesis from <a href="https://gmd.copernicus.org/preprints/gmd-2019-200/">Stocker
  et al. (2019)</a>.<br>- SPLASH for bioclimatic variables, including the surface
  radiation budget and the soil water balance from <a href="https://doi.org/10.5194/gmd-10-689-2017">Davis
  et al. (2017)</a>.<br>- BiomeE for comprehensive simulations of ecosystem carbon
  and water cycling, tree growth, and tree cohort-explicit forest dynamics following
  the Perfect Plasticity Approximation, from <a href="https://doi.org/10.5194/bg-12-2655-2015">Weng
  et al., (2015)</a>.</p>

  <h2>Installation</h2>

  <h3>Stable release</h3>

  <p>To install the current stable release use a CRAN repository:</p>

  <p><code>install.packages("rsofun")</code><br><code>library("rsofun")</code></p>

  <h3>Development release</h3>

  <p>To install the latest development release of the package run the following commands
  to install rsofun directly from GitHub:</p>

  <p><code>if(!require(remotes)){install.packages("remotes")}</code><br><code>remotes::install_github("geco-bern/rsofun")</code><br><code>library("rsofun")</code><br><br></p>

  <p>**NOTE:** Installing from GitHub requires compilation of Fortran and C source
  code contained in {rsofun}. To enable compiling source code, install <a href="https://cran.r-project.org/bin/windows/Rtools/">Rtools</a>
  on Windows, or <a href="https://developer.apple.com/xcode/">Xcode</a> and the <a
  href="https://github.com/fxcoudert/gfortran-for-macOS">GNU Fortran compiler on Mac</a>
  (see also ''Mandatory tools'' <a href="https://mac.r-project.org/tools/">here</a>).
  On Linux, the gfortran compiler is usually installed already.</p>

  <p>Vignettes are not rendered by default, if you want to include additional documentation
  please use:</p>

  <p><code>if(!require(remotes)){install.packages("remotes")}</code><br><code>remotes::install_github("geco-bern/rsofun",
  build_vignettes = TRUE)</code><br><code>library("rsofun")</code></p>

  <h3>From source&nbsp;</h3>

  <p>Assuming <code>rsofun</code> is the location of the source directory, on can
  build the R package (with extension .tar.gz) from the command line using in a bash
  shell:<br><br><code>R CMD build --no-manual --no-build-vignettes rsofun</code><br><br>The
  package can then be installed with:</p>

  <p><code>R CMD INSTALL -c --preclean &nbsp;*.tar.gz</code></p>

  <p>, where the star <code>*</code> can be replaced by the name of the package produced
  at the previous step.</p>

  <h2>Use</h2>

  <p>Below sections show the ease of use of the package in terms of model parameter
  specification and running both a single run or optimizing the parameters for a given
  site (or multiple sites). For an in depth discussion we refer to the <a href="https://geco-bern.github.io/rsofun/articles/">vignettes</a>.</p>

  <h3>Running model</h3>

  <p>With all data prepared we can run the P-model using <code>runread_pmodel_f()</code>.
  This function takes the nested data structure and runs the model site by site, returning
  nested model output results matching the input drivers. In R:</p>

  <p><br><code># define model parameter values from previous</code><br><code># work</code><br><code>params_modl
  &lt;- list(</code><br><code>&nbsp; &nbsp; kphio &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;
  &nbsp; &nbsp;= 0.04998, &nbsp; &nbsp;# setup ORG in Stocker et al. 2020 GMD</code><br><code>&nbsp;
  &nbsp; kphio_par_a &nbsp; &nbsp; &nbsp; &nbsp;= 0.0, &nbsp; &nbsp; &nbsp; &nbsp;#
  set to zero to disable temperature-dependence of kphio</code><br><code>&nbsp; &nbsp;
  kphio_par_b &nbsp; &nbsp; &nbsp; &nbsp;= 1.0,</code><br><code>&nbsp; &nbsp; soilm_thetastar
  &nbsp; &nbsp;= 0.6 * 240, &nbsp;# to recover old setup with soil moisture stress</code><br><code>&nbsp;
  &nbsp; soilm_betao &nbsp; &nbsp; &nbsp; &nbsp;= 0.0,</code><br><code>&nbsp; &nbsp;
  beta_unitcostratio = 146.0,</code><br><code>&nbsp; &nbsp; rd_to_vcmax &nbsp; &nbsp;
  &nbsp; &nbsp;= 0.014, &nbsp; &nbsp; &nbsp;# value from Atkin et al. 2015 for C3
  herbaceous</code><br><code>&nbsp; &nbsp; tau_acclim &nbsp; &nbsp; &nbsp; &nbsp;
  = 30.0,</code><br><code>&nbsp; &nbsp; kc_jmax &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;
  &nbsp;= 0.41</code><br><code>&nbsp; )</code></p>

  <p><code># run the model for these parameters</code><br><code>output &lt;- rsofun::runread_pmodel_f(</code><br><code>&nbsp;
  p_model_drivers,</code><br><code>&nbsp; par = params_modl</code><br><code>&nbsp;
  )</code><br><br></p>

  <h3>Parameter optimization</h3>

  <p>To optimize new parameters based upon driver data and a validation dataset we
  must first specify an optimization strategy and settings, as well as a cost function
  and parameter ranges. In R:</p>

  <p><br><code>settings &lt;- list(</code><br><code>&nbsp; method &nbsp; &nbsp; &nbsp;
  &nbsp; &nbsp; &nbsp; &nbsp;= "GenSA",</code><br><code>&nbsp; metric &nbsp; &nbsp;
  &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;= cost_rmse_pmodel,</code><br><code>&nbsp; control
  = list(</code><br><code>&nbsp; &nbsp; maxit = 100),</code><br><code>&nbsp; par =
  list(</code><br><code>&nbsp; &nbsp; kphio = list(lower=0.02, upper=0.2, init = 0.05)</code><br><code>&nbsp;
  &nbsp; )</code><br><code>)</code><br><br></p>

  <p>`rsofun` supports both optimization using the `GenSA` and `BayesianTools` packages.
  The above statement provides settings for a `GenSA` optimization approach. For this
  example the maximum number of iterations is kept artificially low. In a real scenario
  you will have to increase this value orders of magnitude. Keep in mind that optimization
  routines rely on a cost function, which, depending on its structure influences parameter
  selection. A limited set of cost functions is provided but the model structure is
  transparent and custom cost functions can be easily written. More details can be
  found in the "Parameter calibration and cost functions" vignette.</p>

  <p>In addition starting values and ranges are provided for the free parameters in
  the model. Free parameters include: parameters for the quantum yield efficiency
  `kphio`, `kphio_par_a` and `kphio_par_b`, soil moisture stress parameters `soilm_thetastar`
  and `soilm_betao`, and also `beta_unitcostratio`, `rd_to_vcmax`, `tau_acclim` and
  `kc_jmax` (see `?runread_pmodel_f`). Be mindful that with newer versions of `rsofun`
  additional parameters might be introduced, so re-check vignettes and function documentation
  when updating existing code.</p>

  <p>With all settings defined the optimization function `calib_sofun()` can be called
  with driver data and observations specified. Extra arguments for the cost function
  (like what variable should be used as target to compute the root mean squared error
  (RMSE) and previous values for the parameters that aren''t calibrated, which are
  needed to run the P-model).</p>

  <p><br><code># calibrate the model and optimize free parameters</code><br><code>pars
  &lt;- calib_sofun(</code><br><code>&nbsp; &nbsp; drivers = p_model_drivers, &nbsp;</code><br><code>&nbsp;
  &nbsp; obs = p_model_validation,</code><br><code>&nbsp; &nbsp; settings = settings,</code><br><code>&nbsp;
  &nbsp; # extra arguments passed to the cost function:</code><br><code>&nbsp; &nbsp;
  targets = "gpp", &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; # define target variable
  GPP</code><br><code>&nbsp; &nbsp; par_fixed = params_modl[-1] &nbsp;# fix non-calibrated
  parameters to previous&nbsp;</code><br><code>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;
  &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;#
  values, removing kphio</code><br><code>&nbsp; )</code><br><br></p>

  <h2>Data and code for model documentation paper (Paredes et al., in rev.)</h2>

  <p>Versioned releases of this repository are deposited on Zenodo (see badge at the
  top of the README file). Code to reproduce the analysis and plots presented here
  is contained in this repository (subdirectory `<code>analysis/</code>`) and is demonstrated
  on the model documentation website (<a href="https://geco-bern.github.io/rsofun/">https://geco-bern.github.io/rsofun/</a>,
  article &lsquo;Sensitivity analysis and calibration interpretation&rsquo;).</p>

  <p>The model forcing and evaluation data is based on the publicly available FLUXNET2015
  data for the site FR-Pue, prepared by FluxDataKit v3.4.2 (10.5281/zenodo.14808331),
  taken here as a subset of the originally published data for years 2007-2012. It
  is accessible through the {rsofun} R package and contained as part of this repository
  (subdirectory&nbsp;<code>data/</code>) as CSV and as files. Outputs of the analysis
  presented here are archived in the <code>analysis/paper_results_files/</code>&nbsp;subfolder.</p>

  <p>The model documentation paper is currently under review.<br>A preprint is available
  at: https://www.biorxiv.org/content/10.1101/2023.11.24.568574v3</p>

  <h2>References</h2>

  <p>Stocker, B. D., Wang, H., Smith, N. G., Harrison, S. P., Keenan, T. F., Sandoval,
  D., Davis, T., and Prentice, I. C.: P-model v1.0: an optimality-based light use
  efficiency model for simulating ecosystem gross primary production, Geosci. Model
  Dev., 13, 1545&ndash;1581, https://doi.org/10.5194/gmd-13-1545-2020, 2020.</p>

  <p>Davis, T. W., Prentice, I. C., Stocker, B. D., Thomas, R. T., Whitley, R. J.,
  Wang, H., Evans, B. J., Gallego-Sala, A. V., Sykes, M. T., and Cramer, W.: Simple
  process-led algorithms for simulating habitats (SPLASH v.1.0): robust indices of
  radiation, evapotranspiration and plant-available moisture, Geoscientific Model
  Development, 10, 689&ndash;708, doi:10.5194/gmd-10-689-2017, URL http: //www.geosci-model-dev.net/10/689/2017/,
  2017.</p>

  <p>Weng, E. S., Malyshev, S., Lichstein, J. W., Farrior, C. E., Dybzinski, R., Zhang,
  T., Shevliakova, E., and Pacala, S. W.: Scaling from individual trees to forests
  in an Earth system modeling framework using a mathematically tractable model of
  height-structured competition, Biogeosciences, 12, 2655&ndash;2694, https://doi.org/10.5194/bg-12-2655-2015,
  2015.</p>

  <h2>Acknowledgements</h2>

  <p>The {rsofun} is part of the LEMONTREE project and funded by Schmidt Futures and
  under the umbrella of the Virtual Earth System Research Institute (VESRI).&nbsp;</p>'

Owner metadata


GitHub Events

Total
Last Year

Committers metadata

Last synced: 3 days ago

Total Commits: 2,044
Total Committers: 25
Avg Commits per committer: 81.76
Development Distribution Score (DDS): 0.801

Commits in past year: 475
Committers in past year: 6
Avg Commits per committer in past year: 79.167
Development Distribution Score (DDS) in past year: 0.451

Name Email Commits
Pepa Aran Paredes p****a@p****n 407
Benjamin Stocker b****r@g****m 360
fabern 1****n 279
khufkens k****s@g****m 264
marcadella m****a@u****h 221
stineb b****r@i****k 189
Laura Marques l****z@g****m 115
maloan a****h@u****h 71
Laura Marqués l****s@g****h 54
Laura Marques l****a@p****n 23
Pepa Arán 6****n 19
Joan Maspons j****s@c****t 18
marcadella 3****a 8
Benjamin Stocker b****r@B****l 4
maloan 5****n 2
Benjamin Stocker b****r@c****t 1
Benjamin Stocker b****r@B****l 1
Benjamin Stocker b****e@e****h 1
Benjamin Stocker b****e@e****h 1
Benjamin Stocker b****e@e****h 1
Benjamin Stocker b****e@e****h 1
Benjamin Stocker b****e@e****h 1
Benjamin Stocker b****e@g****h 1
stineb b****r@g****m 1
yunpeng y****g@u****h 1

Committer domains:


Issue and Pull Request metadata

Last synced: 8 days ago

Total issues: 105
Total pull requests: 154
Average time to close issues: 3 months
Average time to close pull requests: 11 days
Total issue authors: 8
Total pull request authors: 10
Average comments per issue: 2.55
Average comments per pull request: 1.0
Merged pull request: 109
Bot issues: 0
Bot pull requests: 0

Past year issues: 13
Past year pull requests: 48
Past year average time to close issues: 12 days
Past year average time to close pull requests: 14 days
Past year issue authors: 3
Past year pull request authors: 5
Past year average comments per issue: 1.54
Past year average comments per pull request: 0.83
Past year merged pull request: 26
Past year bot issues: 0
Past year bot pull requests: 0

More stats: https://issues.ecosyste.ms/repositories/lookup?url=https://github.com/geco-bern/rsofun

Top Issue Authors

  • marcadella (36)
  • stineb (20)
  • khufkens (18)
  • fabern (14)
  • pepaaran (13)
  • FrancescoGrossi-unimi (2)
  • jrmodel (1)
  • Zinny-E (1)

Top Pull Request Authors

  • stineb (33)
  • fabern (32)
  • marcadella (29)
  • khufkens (19)
  • pepaaran (19)
  • jaideep777 (6)
  • lauramarques (5)
  • maloan (4)
  • FrancescoGrossi-unimi (4)
  • jrmodel (3)

Top Issue Labels

  • enhancement (4)
  • question (1)
  • wontfix (1)
  • documentation (1)

Top Pull Request Labels


Package metadata

proxy.golang.org: github.com/geco-bern/rsofun

  • Homepage:
  • Documentation: https://pkg.go.dev/github.com/geco-bern/rsofun#section-documentation
  • Licenses: gpl-3.0
  • Latest release: v5.1.0+incompatible (published 3 months ago)
  • Last Synced: 2025-12-18T21:06:54.662Z (6 days ago)
  • Versions: 6
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Rankings:
    • Dependent packages count: 5.395%
    • Average: 5.576%
    • Dependent repos count: 5.758%
cran.r-project.org: rsofun

The P-Model and BiomeE Modelling Framework

  • Homepage: https://github.com/geco-bern/rsofun
  • Documentation: http://cran.r-project.org/web/packages/rsofun/rsofun.pdf
  • Licenses: GPL-3
  • Latest release: 5.1.0 (published 3 months ago)
  • Last Synced: 2025-12-18T21:06:51.868Z (6 days ago)
  • Versions: 3
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 164 Last month
  • Rankings:
    • Dependent packages count: 28.954%
    • Dependent repos count: 36.973%
    • Average: 50.896%
    • Downloads: 86.762%
  • Maintainers (1)

Dependencies

DESCRIPTION cran
  • R >= 3.6 depends
  • BayesianTools * imports
  • GenSA * imports
  • dplyr * imports
  • graphics * imports
  • lubridate * imports
  • magrittr * imports
  • multidplyr * imports
  • purrr * imports
  • stats * imports
  • tidyr * imports
  • tidyselect * imports
  • utils * imports
  • covr * suggests
  • ggplot2 * suggests
  • knitr * suggests
  • rmarkdown * suggests
  • rpmodel * suggests
  • testthat * suggests
.github/workflows/R-CMD-check.yaml actions
  • actions/cache v2 composite
  • actions/checkout v2 composite
  • actions/upload-artifact main composite
  • r-lib/actions/setup-pandoc v2 composite
  • r-lib/actions/setup-r v2 composite
.github/workflows/deploy_docs.yaml actions
  • JamesIves/github-pages-deploy-action v4.4.1 composite
  • actions/checkout v3 composite
  • r-lib/actions/setup-pandoc v2 composite
  • r-lib/actions/setup-r v2 composite
  • r-lib/actions/setup-r-dependencies v2 composite
.github/workflows/test-coverage.yaml actions
  • actions/cache v2 composite
  • actions/checkout v2 composite
  • r-lib/actions/setup-pandoc v1 composite
  • r-lib/actions/setup-r v1 composite

Score: 12.17496890047884