imdlib
Download and handle binary grided data from Indian Meterological department.
https://github.com/iamsaswata/imdlib
Category: Atmosphere
Sub Category: Meteorological Observation and Forecast
Keywords
gridded-data imd python
Last synced: about 15 hours ago
JSON representation
Repository metadata
Download and process binary IMD meteorological data in Python
- Host: GitHub
- URL: https://github.com/iamsaswata/imdlib
- Owner: iamsaswata
- License: mit
- Created: 2020-01-21T23:42:54.000Z (almost 6 years ago)
- Default Branch: master
- Last Pushed: 2025-12-04T11:09:26.000Z (21 days ago)
- Last Synced: 2025-12-19T23:03:33.670Z (5 days ago)
- Topics: gridded-data, imd, python
- Language: Python
- Homepage: https://imdlib.readthedocs.io
- Size: 7.98 MB
- Stars: 40
- Watchers: 4
- Forks: 28
- Open Issues: 6
- Releases: 7
-
Metadata Files:
- Readme: README.md
- License: LICENSE
README.md
imdlib
This is a python package to download and handle binary grided data from Indian Meterological department (IMD).
Installation
pip install imdlib
or
conda install -c iamsaswata imdlib
or
pip install git+https://github.com/iamsaswata/imdlib.git
Documentation
Video Tutorial
License
imdlib is available under the MIT license.
Citation
If you are using imdlib and would like to cite it in academic publication, we would certainly appreciate it. We recommend to use one of these two DOIs for this purpose:
Nandi, S., Patel, P., and Swain, S. (2024). IMDLIB: An open-source library for retrieval, processing and spatiotemporal exploratory assessments of gridded meteorological observation datasets over India. Environmental Modelling and Software, 71 (105869), [DOI]
Nandi, S., Patel, P., and Swain, S. (2022). IMDLIB: A python library for IMD gridded data. Zenodo. [DOI]
Publications using IMDLIB
Bahita, T. A., Swain, S., Jha, P. K., Palmate, S. S., & Pandey, A. (2025). Numerical modelling of pollutant dispersion affecting water quality of Upper Ganga Canal (Roorkee City, India). International Journal of Environmental Science and Technology, 22(6), 4433-4444. [DOI]
Dubey, N., Hari, V., Bastos, A., & Ghosh, S. (2025). Vegetation productivity in India is modulated by climate teleconnections from the Pacific Ocean. Journal of Geophysical Research: Biogeosciences, 130(9), e2024JG008682. [DOI]
Kumre, S. K., Swain, S., Amrit, K., Mishra, S. K., & Pandey, A. (2025). Linking curve number with environmental flows: a novel approach. Environmental Science and Pollution Research, 32(16), 10314-10327. [DOI]
Sharma, J., Kumar, A., & Singh, O. (2025). Unraveling the historical and future changes in rainfall concentration over the Narmada River basin. Physical Geography, 1-38. [DOI]
Tsela, R., Maladaki, S., & Kolios, S. (2025). An integrated, automated and modular approach for real-time weather monitoring of surface meteorological variables and short-range forecasting using machine learning. Environmental Modelling & Software, 183, 106203. [DOI]
Sarda, R., & Kumar, P. (2025). Monitoring the dual-season hydrological dynamics of the Pong reservoir in Himachal Pradesh, India. Frontiers in Remote Sensing, 6, 1682140. [DOI]
Krishna, A. B., Kaur, S., Sandhu, S. S., & Kaur, H. (2025). Multi-decadal annual and seasonal temperature variability from 1951 to 2095 over Indian Punjab—A non-parametric statistical approach. Bulletin of Atmospheric Science and Technology, 6(1), 26. [DOI]
Anand, A., Kalyan, K. L., & Bhardwaj, A. (2025). Change Detection of Indian Himalayan Landslide Using Terrestrial Laser Scanner. Indian Geotechnical Journal, 1-14. [DOI]
Zewdu, D., Krishnan, C. M., Raj, P. P., Barati, M. K., Makadi, Y. C., Arlikatti, S., ... & McAleavy, T. (2025). Assessment of Livelihood Vulnerability to Climate Change: A Multidimensional Case Study from Dongarampur Region, India. Earth Systems and Environment, 1-35. [DOI]
Islam, S., Thanveer, J., Yunus, A.P. Beetan, Y., Umrikar, B., Arya, D. S., & Siva Subramanian, S. (2025). Impact of antecedent rainfall and soil saturation on widespread debris flows in the northern Western Ghats during the 2021 extreme rainfall. Bulletin of Engineering Geology and the Environment 84, 360. [DOI]
Karthikeyan, A., Karthik, V., & Chandrasekaran, S. (2025). Flowering out of sync: Climate change alters the reproductive phenology of Terminalia paniculata in the Western Ghats of India. Plants, People, Planet. [DOI]
Ghosh, A., Chakraborty, P. (2025). Mapping Landslide Potential and Assessing Susceptibility in the Darjiling Himalaya Using GIS and Bivariate Statistics. The Himalaya Dilemma. [DOI]
Manivasagam, V. S., Kanagaraj, V. R., Marimuthu, N., Shaanjai, K. S., & Manalil, S. (2025). Exploring the Dynamics of Extreme Rainfall in the Cauvery River Basin, Southern India: Spatio-Temporal Insights and Adaptive Strategies. Natural Hazards Research. [DOI]
Krishna, A. B., Kaur, S., & Sandhu, S. S. (2025). Evaluating the robustness of IMD gridded data of temperature and rainfall with/without statistical bias correction techniques. Arabian Journal of Geosciences, 18(9), 159. [DOI]
Dilama Shamsudeen, S., Sankaran, A., Sajith, A., Stanzin, T., Dev, D., & Abdul Samad, M. S. (2025). A Non-Stationary Framework for Landslide Hazard Assessment Under the Extreme Rainfall Condition. Earth Systems and Environment, 9(1), 337-355. [DOI]
Sailaja, B., Gayatri, S., Rathod, S. et al. (2024). Spatial temperature prediction—a machine learning and GIS perspective. Theoretical and Applied Climatology, 155, 9619–9642. [DOI]
Kulkarni, S., & Agarwal, A. (2024). Quantifying the association between Arctic Sea ice extent and Indian precipitation. International Journal of Climatology, 44(2), 470-484. [DOI]
Sharma, I., Swain, S., Mishra, S. K., & Pandey, A. (2024). Investigating climate and land use change impacts on design flood estimation over Indian tropical catchments. Tropical Ecology, 65(3), 483-507. [DOI]
Srinidhi, A., Smolenaars, W., Werners, S. E., Hegde, S., Rajapure, G., Meuwissen, M. P., & Ludwig, F. (2024). Critical climate-stress moments for semi-arid farming systems in India. Regional Environmental Change, 24(3), 122. [DOI]
Mekonnen, E. N., Fetene, A., & Gebremariam, E. (2024). Grid-based climate variability analysis of Addis Ababa, Ethiopia. Heliyon, 10(6). [DOI]
Kundu, M., Zafor, A., & Maiti, R. (2024). Assessing the nature of potential groundwater zones through machine learning (ML) algorithm in tropical plateau region, West Bengal, India. Acta Geophysica, 72(1), 433-448. [DOI]
Dhal, L., & Kansal, M. L. (2024). An ecohydrological approach to assess water provisioning and supporting ecosystem services in the Budhabalanga River Basin, India. Environmental Monitoring and Assessment, 196(8), 688. [DOI]
Neog, D. R., Singha, G., Dev, S., & Prince, E. H. (2024). Artificial intelligence and its application in disaster risk reduction in the agriculture sector. Disaster risk reduction and rural resilience: with a focus on agriculture, water, gender and Technology. [DOI]
Mohanty, P. K., Pradhan, S., & Samal, R. N. (2024). Vegetation dynamics and its response to climate change at Bhitarkanika mangrove forest, Odisha, east coast of India. Vegetation Dynamics and Crop Stress, (pp. 149-164). Academic Press. [DOI]
Arya, V., & Rao, M. S. (2024). Groundwater recharge potential index and artificial groundwater recharge in the alluvial soils of the middle Ganga basin. Discover Applied Sciences, 6(7), 367. [DOI]
Gupta, A., Sawant, C. P., Kumar, M., Singh, R. K., & Rao, K. V. R. (2024). Assessment of rainfall erosivity for Bundelkhand region of central India using long-term rainfall data. Mausam, 75(2), 415-432. [DOI]
Swain, S., Mishra, P.K., Nandi, S., Pradhan, B., Sahoo, S., & Al-Ansari, A. (2024). A simplistic approach for monitoring meteorological drought over arid regions: a case study of Rajasthan, India. Applied Water Science, 14, 36. [DOI]
Jaiswal, S., Balietti, A., & Schäffer, D. (2023). Environmental Protection and Labor Market Composition. University of Heidelberg, Department of Economics [DOI]
Pandey, H.K., Singh, V.K., Singh, R.P. et al. (2023). Soil Loss Estimation Using RUSLE in Hard Rock Terrain: a Case Study of Bundelkhand, India. Water Conserv Sci Eng 8, 55. [DOI]
Vage, S., Gupta, T., Roy, S. (2023). Impact Analysis of Climate Change on Floods in an Indian Region Using Machine Learning. In: ICANN 2023, 14261. [DOI]
Garg, N., Negi, S., Nagar, R., Rao, S., & KR, S. (2023). Multivariate multi-step LSTM model for flood runoff prediction: a case study on the Godavari River Basin in India. Journal of Water and Climate Change, [DOI]
Bora, S., & Hazarika, A. (2023). Rainfall time series forecasting using ARIMA model. In 2023 ATCON-1, (pp. 1-5). IEEE, [DOI]
Panja, A., Garai, S., Zade, S., Veldandi, A., Sahani, S., & Maiti, S. (2023). Climate Data Extraction for Social Science Research: A Step by Step Process. Social Science Dimensions of Climate Resilient Agriculture, [ISBN] (ISBN: 978-81-964762-1-2)
Chakra, S., Ganguly, A., Oza, H., Padhya, V., Pandey, A., & Deshpande, R. D. (2023). Multidecadal summer monsoon rainfall trend reversals in South Peninsular India: a new approach to examining long-term rainfall dataset. Journal of Hydrology, [DOI].
Sardar, P., and Samadder, S. R. (2023). Long-term ecological vulnerability assessment of indian sundarban region under present and future climatic conditions under CMIP6 model. Ecological Informatics. [DOI]
Roy, P. K., Ghosh, A., Basak, S. K., Mohinuddin, S., & Roy M. B. (2023). Analysing the Role of AHP Model to Identify Flood Hazard Zonation in a Coastal Island, India. Journal of the Indian Society of Remote Sensing Article, 1-15. [DOI]
Kundu, M., Zafor, A., & Maiti, R. (2023). Assessing the nature of potential groundwater zones through machine learning (ML) algorithm in tropical plateau region, West Bengal, India. Acta Geophysica, 1-16. [DOI]
Venkatesh, S., Kirubakaran, T., Ayaz, R. M., Umar, S. M., & Parimalarenganayaki, S. (2023). Non-parametric Approaches to Identify Rainfall Pattern in Semi-Arid Regions: Ranipet, Vellore, and Tirupathur Districts, Tamil Nadu, India. In River Dynamics and Flood Hazards (pp. 507-525). Springer, Singapore. [DOI]
Swain, S., Mishra, S. K., Pandey, A., & Dayal, D. (2022). Assessment of drought trends and variabilities over the agriculture-dominated Marathwada Region, India. Environmental Monitoring and Assessment, 194(12), 1-18.
[DOI]
Swain, S., Mishra, S. K., Pandey, A., Dayal, D., & Srivastava, P. K. (2022). Appraisal of historical trends in maximum and minimum temperature using multiple non-parametric techniques over the agriculture-dominated Narmada Basin, India. Environmental Monitoring and Assessment, 194(12), 1-23. [DOI]
Owner metadata
- Name: Saswata Nandi
- Login: iamsaswata
- Email:
- Kind: user
- Description:
- Website:
- Location:
- Twitter:
- Company:
- Icon url: https://avatars.githubusercontent.com/u/15724605?u=aa4774208259d9f052a9b13b0e21a1f48a095548&v=4
- Repositories: 5
- Last ynced at: 2023-03-10T08:02:20.642Z
- Profile URL: https://github.com/iamsaswata
GitHub Events
Total
- Create event: 3
- Release event: 1
- Issues event: 5
- Watch event: 8
- Delete event: 2
- Push event: 7
- Pull request event: 8
- Fork event: 4
Last Year
- Create event: 3
- Release event: 1
- Issues event: 4
- Watch event: 8
- Delete event: 2
- Push event: 7
- Pull request event: 8
- Fork event: 4
Committers metadata
Last synced: about 24 hours ago
Total Commits: 237
Total Committers: 3
Avg Commits per committer: 79.0
Development Distribution Score (DDS): 0.072
Commits in past year: 17
Committers in past year: 3
Avg Commits per committer in past year: 5.667
Development Distribution Score (DDS) in past year: 0.118
| Name | Commits | |
|---|---|---|
| iamsaswata | n****7@g****m | 220 |
| Pratiman | 3****1 | 16 |
| copilot-swe-agent[bot] | 1****t | 1 |
Issue and Pull Request metadata
Last synced: 21 days ago
Total issues: 28
Total pull requests: 11
Average time to close issues: 2 months
Average time to close pull requests: 13 days
Total issue authors: 17
Total pull request authors: 5
Average comments per issue: 1.96
Average comments per pull request: 0.18
Merged pull request: 5
Bot issues: 0
Bot pull requests: 0
Past year issues: 3
Past year pull requests: 6
Past year average time to close issues: about 1 hour
Past year average time to close pull requests: 2 days
Past year issue authors: 3
Past year pull request authors: 4
Past year average comments per issue: 1.33
Past year average comments per pull request: 0.17
Past year merged pull request: 1
Past year bot issues: 0
Past year bot pull requests: 0
Top Issue Authors
- pratiman-91 (11)
- answerquest (2)
- holeinsky (1)
- chrismathen (1)
- julianwid (1)
- bkowshik (1)
- thisisashukla (1)
- pradeep2c1 (1)
- samyaroy (1)
- SubhadipDatta (1)
- y-sheng (1)
- carbform (1)
- ved-ux (1)
- ronakladhar (1)
- rohan472000 (1)
Top Pull Request Authors
- pratiman-91 (4)
- anantrajj7-sketch (2)
- iamsaswata (2)
- samyaroy (2)
- answerquest (1)
Top Issue Labels
- enhancement (7)
- bug (2)
- question (2)
- wontfix (1)
Top Pull Request Labels
Package metadata
- Total packages: 1
-
Total downloads:
- pypi: 6,564 last-month
- Total docker downloads: 8
- Total dependent packages: 0
- Total dependent repositories: 3
- Total versions: 28
- Total maintainers: 1
pypi.org: imdlib
A tool for handling and downloading IMD gridded data
- Homepage: https://github.com/iamsaswata/
- Documentation: https://imdlib.readthedocs.io/
- Licenses: MIT
- Latest release: 0.1.21 (published 21 days ago)
- Last Synced: 2025-12-23T15:32:03.823Z (1 day ago)
- Versions: 28
- Dependent Packages: 0
- Dependent Repositories: 3
- Downloads: 6,564 Last month
- Docker Downloads: 8
-
Rankings:
- Docker downloads count: 4.264%
- Downloads: 4.887%
- Average: 7.044%
- Dependent repos count: 8.985%
- Dependent packages count: 10.038%
- Maintainers (1)
Dependencies
- imdlib *
- sphinx-automodapi *
- certifi >=2019.11.28
- matplotlib >=3.1.3
- numpy >=1.18.1
- pandas >=0.25.3
- pytest *
- python-dateutil >=2.8.1
- pytz >=2019.3
- requests *
- scipy >=1.4.1
- six ==1.14.0
- urllib3 *
- xarray >=0.14.1
- matplotlib *
- numpy *
- pandas *
- python-dateutil *
- pytz *
- requests *
- scipy *
- six *
- urllib3 *
- xarray *
- actions/checkout v2 composite
- actions/checkout v2 composite
- actions/setup-python v2 composite
Score: 13.718587678458555
