Herbie

A Python package that downloads recent and archived numerical weather prediction model output from different cloud archive sources.
https://github.com/blaylockbk/Herbie

Category: Atmosphere
Sub Category: Meteorological Observation and Forecast

Keywords

big-data-program cfgrib download ecmwf-data gfs grib grib2 hrrr noaa-data nomads numerical-weather-prediction open-data python rap xarray

Keywords from Contributors

weather chart atmospheric-science meteorology simulations parallel share radar benchmarking streams

Last synced: about 1 hour ago
JSON representation

Repository metadata

Download numerical weather prediction datasets (HRRR, RAP, GFS, IFS, etc.) from NOMADS, NODD partners (Amazon, Google, Microsoft), ECMWF open data, and the University of Utah Pando Archive System.

README.md

Herbie Logo

Herbie: Download Weather Forecast Model Data in Python 🏁

Access HRRR, GFS, RAP, GEFS, IFS and more!

PyPI - Python Version
PyPI
Conda Version
DOI

Tests (Conda)
Tests (Python)
Documentation Status
Ruff

Conda Downloads
PyPI - Downloads
PyPI - License

πŸ“š Documentation | πŸ’¬ Discussions | ❔ Get Help


What is Herbie?

Herbie is a Python package that makes downloading and working with numerical weather prediction (NWP) model data simple and fast. Whether you're a researcher, meteorologist, data scientist, or weather enthusiast, Herbie provides easy access to forecast data from NOAA, ECMWF, and other sources.

Key Features:

  • 🌐 Access 15+ weather models - HRRR, GFS, RAP, GEFS, ECMWF, and more
  • ⚑ Smart downloads - Get full GRIB2 files or subset by variable to save time and bandwidth
  • πŸ”„ Multiple data sources - Automatically searches different archive (AWS, Google Cloud, NOMADS, Azure)
  • πŸ“Š Built-in data reading - Load data directly into xarray for analysis
  • πŸ› οΈ CLI and Python API - Use from command line or in your Python scripts
  • πŸ—ΊοΈ Visualization aids - Includes Cartopy integration for mapping

Keywords: weather data download, GRIB2, python, numerical weather prediction, meteorological data, weather forecast API, xarray, atmospheric data, research, academia, data science, machine learning,visualization


Quick Start

Installation

With conda or mamba:

conda install -c conda-forge herbie-data
mamba install -c conda-forge herbie-data

With pip:

pip install herbie-data

With uv:

uv add herbie-data

Note: optional features require manual installation of wgrib2

Simple Example

from herbie import Herbie

# Create a Herbie object for HRRR model data
H = Herbie(
    '2021-01-01 12:00',  # Date and time
    model='hrrr',         # Model name
    product='sfc',        # Product type
    fxx=6                 # Forecast hour
)

# Show file contents
H.inventory()

# Download and read 2-meter temperature
temperature = H.xarray("TMP:2 m")

Command Line Interface

# Download HRRR surface forecast
herbie download -m hrrr --product sfc -d "2023-03-15 12:00" -f 0

# Get specific variable (temperature at 850 mb)
herbie download -m gfs --product 0p25 -d 2023-03-15 -f 24 --subset ":TMP:850 mb:"

# View available variables
herbie inventory -m rap -d 2023031512 -f 0

Supported Weather Models

Herbie provides access to a wide range of numerical weather prediction models:

US Models (NOAA)

  • HRRR - High Resolution Rapid Refresh (3km resolution)
  • HRRR-Alaska - Alaska version
  • GFS - Global Forecast System
  • GEFS - Global Ensemble Forecast System
  • RAP - Rapid Refresh
  • NAM - North American Mesoscale Model
  • NBM - National Blend of Models
  • RTMA/URMA - Real-Time/Un-Restricted Mesoscale Analysis
  • RRFS - Rapid Refresh Forecast System (prototype)
  • HAFS - Hurricane Analysis and Forecast System
  • CFS - Climate Forecast System

Much of this data is made available through the NOAA Open Data Dissemination (NODD) program.

Other Models

  • ECMWF - ECMWF's IFS and AIFS Open Data Forecasts
  • HRDPS - Canada's High Resolution Deterministic Prediction System (Canada)
  • NAVGEM - U.S. Navy Global Environmental Model

View all models in the gallery β†’


Core Capabilities

Features:

  • πŸ” Search model output from different data sources
  • ⬇️ Download full or subset GRIB2 files
  • πŸ“– Read data with xarray and index files with Pandas
  • πŸ—ΊοΈ Built-in Cartopy aids for mapping
  • 🎯 Extract data at specific points
  • πŸ”Œ Extensible with custom model templates
  graph TD;
      d1[(HRRR)] -..-> H
      d2[(RAP)] -.-> H
      d3[(GFS)] -..-> H
      d33[(GEFS)] -.-> H
      d4[(IFS)] -..-> H
      d44[(AIFS)] -..-> H
      d5[(NBM)] -.-> H
      d6[(RRFS)] -..-> H
      d7[(RTMA)] -.-> H
      d8[(URMA)] -..-> H
      H((Herbie))
      H --- .inventory
      H --- .download
      H --- .xarray

      style H fill:#d8c89d,stroke:#0c3576,stroke-width:4px,color:#000000

Python API

Herbie's Python API is used like this:

from herbie import Herbie

# Herbie object for the HRRR model 6-hr surface forecast product
H = Herbie(
  '2021-01-01 12:00',
  model='hrrr',
  product='sfc',
  fxx=6
)

# View all variables in a file
H.inventory()

# Download options
H.download()              # Download full GRIB2 file
H.download(":500 mb")     # Download subset (all 500 mb fields)
H.download(":TMP:2 m")    # Download specific variable

# Read data into xarray
ds = H.xarray("TMP:2 m")  # 2-meter temperature
ds = H.xarray(":500 mb")  # All 500 mb level data

Command Line Interface

Herbie also has a command line interface (CLI) so you can use Herbie right in your terminal.

# Get the URL for a HRRR surface file from today at 12Z
herbie data -m hrrr --product sfc -d "2023-03-15 12:00" -f 0

# Download GFS 0.25Β° forecast hour 24 temperature at 850mb
herbie download -m gfs --product 0p25 -d 2023-03-15T00:00 -f 24 --subset ":TMP:850 mb:"

# View all available variables in a RAP model run
herbie inventory -m rap -d 2023031512 -f 0

# Download multiple forecast hours for a date range
herbie download -m hrrr -d 2023-03-15T00:00 2023-03-15T06:00 -f 1 3 6 --subset ":UGRD:10 m:"

# Specify custom source priority (check only Google)
herbie data -m hrrr -d 2023-03-15 -f 0 -p google

Data Sources

Herbie automatically searches for data at multiple data sources:


Documentation & Help

πŸ“˜ Full Documentation - Comprehensive guides and API reference

πŸ–ΌοΈ Example Gallery - Browse code examples for each model

πŸ’¬ GitHub Discussions - Ask questions and share ideas

πŸš‘ Report Issues - Found a bug? Let us know


Citation & Acknowledgment

If Herbie played an important role in your work, please tell us about it!

Suggested Citation

Blaylock, B. K. (YEAR). Herbie: Retrieve Numerical Weather Prediction Model Data (Version 20xx.x.x) [Computer software]. https://doi.org/10.5281/zenodo.4567540

Suggested Acknowledgment

A portion of this work used code generously provided by Brian Blaylock's Herbie python package (https://doi.org/10.5281/zenodo.4567540)


Contributing

We welcome contributions! Here's how you can help:

  • ⭐ Star this repository
  • πŸ‘€ Watch for new discussions and issues
  • πŸ’¬ Participate in GitHub Discussions
  • πŸ™Œ Share your work in Show and Tell
  • πŸ› Report bugs or suggest features via Issues
  • πŸ“ Improve documentation
  • πŸ§ͺ Test latest releases
  • πŸ’» Submit pull requests

Read the Contributing Guide for more details.


Project History and Background

During my PhD at the University of Utah, I created, at the time, the only publicly-accessible archive of HRRR data. Over 1,000 research scientists and professionals used that archive.

Herbie was then developed to access HRRR data from that archive and was first used on the Open Science Grid.

In 2020, the HRRR dataset was made available through the NOAA Open Data Dissemination Program. Herbie evolved from my original download scripts into a comprehensive package supporting multiple models and data sources.

Name Origin: I originally released this package under the name β€œHRRR-B” because it only worked with the HRRR dataset; the β€œB” was for Brian. Since then, I have added the ability to download many more models including RAP, GFS, ECMWF, GEFS, and RRFS with the potential to add more models in the future. Thus, this package was renamed Herbie, named after one of my favorite childhood movies.

The University of Utah MesoWest group now manages a HRRR archive in Zarr format. Maybe someday, Herbie will be able to take advantage of that archive.

About the Author

Thanks for using Herbie, and happy racing! 🏁

Brian Blaylock
🌐 Personal Webpage

Other Projects by Brian


Alternative Tools

rclone: As an alternative to Herbie, you can use rclone to download files from remote archives. I love rclone. Here's a short rclone tutorial.


Project Statistics

Visualize Structure Star History PyPI Statistics

Citation (CITATION.cff)

cff-version: 1.2.0
abstract: Herbie is a python package that downloads recent and archived numerical weather prediction (NWP) model output from different cloud archive sources. Its most popular capability is to download HRRR model data. NWP data in GRIB2 format can be read into an xarray dataframe using the cfgrib package. Much of this data is made available through the NOAA Open Data Dissemination (NODD) Program (formerly the Big Data Program) which has made weather data more accessible than ever before.
message: "If you use this software, please cite it as below."
authors:
  - family-names: Blaylock
    given-names: Brian K.
    email: blaylockbk@gmail.com
    orcid: "https://orcid.org/0000-0003-2133-9313"
title: "Herbie: Retrieve Numerical Weather Prediction Model Data"
version: 2024.5.0
date-released: "2023-03-02"
url: "https://herbie.readthedocs.io/"
repository-code: "https://github.com/blaylockbk/Herbie"
type: software
keywords:
  - meteorology
  - weather
  - numerical weather prediction
  - forecast
  - atmosphere
license: "MIT"
identifiers:
  - type: doi
    value: 10.5281/zenodo.4567540

Owner metadata


GitHub Events

Total
Last Year

Committers metadata

Last synced: 6 days ago

Total Commits: 1,332
Total Committers: 32
Avg Commits per committer: 41.625
Development Distribution Score (DDS): 0.122

Commits in past year: 193
Committers in past year: 14
Avg Commits per committer in past year: 13.786
Development Distribution Score (DDS) in past year: 0.238

Name Email Commits
Brian Blaylock b****k@g****m 1169
Coat a****t@a****r 34
Andreas Motl a****l@p****g 18
Alexander Rey m****l@a****a 16
karlwx k****2@p****u 15
Brian Blaylock b****r@n****l 13
Rafael Guedes r****s@o****e 12
Nikhil Shankar n****r@u****u 8
Will Hobbs 4****s 6
GabrielKS 2****S 4
Haim Daniel h****l@g****m 4
Raul Viera-Mercado v****1@l****v 4
Nick Young n****g@a****z 3
Tamas Weisz w****a@g****m 3
BANANAPEEL202 b****5@g****m 2
David P. Chassin d****n@m****m 2
Haim Daniel h****m@j****m 2
djgagne@ou.edu d****e@g****m 2
fleegs79 1****9 2
zamlty 2****y 1
Brian = 1
David Landry d****y@i****r 1
timothydonohue t****m@a****i 1
joshuaeh j****2@g****m 1
cyril 3****s 1
Xuesong Wang x****g@w****u 1
The Gitter Badger b****r@g****m 1
Taylor Mandelbaum m****r@g****m 1
Steve Nesbitt s****t@i****u 1
Stephen Campbell s****0@h****m 1
and 2 more...

Committer domains:


Issue and Pull Request metadata

Last synced: 3 days ago

Total issues: 201
Total pull requests: 179
Average time to close issues: 2 months
Average time to close pull requests: 18 days
Total issue authors: 76
Total pull request authors: 28
Average comments per issue: 1.67
Average comments per pull request: 0.97
Merged pull request: 144
Bot issues: 0
Bot pull requests: 0

Past year issues: 43
Past year pull requests: 62
Past year average time to close issues: 12 days
Past year average time to close pull requests: 8 days
Past year issue authors: 27
Past year pull request authors: 15
Past year average comments per issue: 0.91
Past year average comments per pull request: 0.79
Past year merged pull request: 39
Past year bot issues: 0
Past year bot pull requests: 0

More stats: https://issues.ecosyste.ms/repositories/lookup?url=https://github.com/blaylockbk/Herbie

Top Issue Authors

  • blaylockbk (89)
  • williamhobbs (12)
  • jp2nyy (6)
  • karlwx (5)
  • amotl (4)
  • byphilipp (3)
  • dchassin (3)
  • rafa-guedes (3)
  • btickell (3)
  • SaundersJE97 (2)
  • moptis (2)
  • cole-p (2)
  • bryanguarente (2)
  • isodrosotherm (2)
  • jahanbani (2)

Top Pull Request Authors

  • blaylockbk (99)
  • karlwx (14)
  • alcoat (9)
  • williamhobbs (6)
  • amotl (6)
  • dchassin (4)
  • neon-ninja (4)
  • haim0n (3)
  • vieramercado (3)
  • cyrilbois (2)
  • zamlty (2)
  • fleegs79 (2)
  • emmanuel-ferdman (2)
  • timdonohue-aerology (2)
  • sjcrz (2)

Top Issue Labels

  • help wanted (16)
  • enhancement (13)
  • documentation (10)
  • ECMWF (9)
  • πŸ’‘ Idea (7)
  • bug (7)
  • RAP (3)
  • GFS (3)
  • upstream (2)
  • 🍁 Canada (2)
  • CFS (2)
  • πŸ”Ž searchString (1)
  • needs more info (1)
  • wontfix (1)
  • windows (1)
  • good first issue (1)
  • FastHerbie (1)
  • πŸ§ͺ CI/CD (1)
  • RRFS (1)
  • GEFS (1)
  • accessors (1)
  • πŸ“ƒ inventory (1)

Top Pull Request Labels

  • enhancement (7)
  • ECMWF (5)
  • accessors (3)
  • install (2)
  • RRFS (2)
  • CLI (2)
  • HAFS (1)
  • help wanted (1)
  • plugin (1)
  • FastHerbie (1)
  • RTMA (1)

Package metadata

pypi.org: herbie-data

Download numerical weather prediction GRIB2 model data.

  • Homepage: https://github.com/blaylockbk/Herbie
  • Documentation: https://herbie.readthedocs.io/
  • Licenses: MIT License Copyright (c) 2019-2024 Brian K. Blaylock Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  • Latest release: 2025.10.1 (published 3 days ago)
  • Last Synced: 2025-10-31T21:04:03.777Z (3 days ago)
  • Versions: 26
  • Dependent Packages: 3
  • Dependent Repositories: 1
  • Downloads: 14,436 Last month
  • Rankings:
    • Stargazers count: 3.683%
    • Forks count: 5.604%
    • Downloads: 6.649%
    • Dependent packages count: 7.31%
    • Average: 9.067%
    • Dependent repos count: 22.088%
  • Maintainers (1)
pypi.org: hrrrb

Download model data (HRRR, RAP, GFS, NBM, etc.) from NOMADS, NOAA's Big Data Program partners (Amazon, Google, Microsoft), and the University of Utah Pando Archive System.

  • Homepage:
  • Documentation: https://blaylockbk.github.io/Herbie/_build/html/
  • Licenses: MIT
  • Latest release: 0.0.6 (published about 4 years ago)
  • Last Synced: 2025-10-31T21:04:02.244Z (3 days ago)
  • Versions: 6
  • Dependent Packages: 0
  • Dependent Repositories: 1
  • Downloads: 64 Last month
  • Rankings:
    • Stargazers count: 3.683%
    • Forks count: 5.604%
    • Dependent packages count: 7.31%
    • Average: 17.182%
    • Dependent repos count: 22.088%
    • Downloads: 47.224%
  • Maintainers (1)
conda-forge.org: herbie-data

Herbie is a python package that downloads recent and archived numerical weather prediction (NWP) model output from different cloud archive sources. Its most popular capability is to download HRRR model data. NWP data in GRIB2 format can be read with xarray+cfgrib. Much of this data is made available through the NOAA Open Data Dissemination (NODD) Program (formerly the Big Data Program) which has made weather data more accessible than ever before.

  • Homepage: https://github.com/blaylockbk/Herbie
  • Licenses: MIT
  • Latest release: 2022.9.0.post1 (published about 3 years ago)
  • Last Synced: 2025-11-01T09:02:58.287Z (3 days ago)
  • Versions: 1
  • Dependent Packages: 0
  • Dependent Repositories: 1
  • Rankings:
    • Dependent repos count: 24.103%
    • Stargazers count: 24.852%
    • Forks count: 26.733%
    • Average: 31.807%
    • Dependent packages count: 51.54%

Dependencies

ci/requirements.txt pypi
  • cfgrib >=0.9.9.1
  • metpy >=1.3.0
  • numpy >=1.22.3
  • pandas >=1.4.1
  • requests >=2.27.1
  • toml >=0.10.2
  • xarray >=2022.3.0
requirements.txt pypi
  • cartopy *
  • cfgrib *
  • matplotlib *
  • metpy *
  • numpy *
  • pandas *
  • pygrib *
  • toml *
  • xarray *
setup.py pypi
  • cartopy *
  • cfgrib *
  • metpy *
  • numpy *
  • pandas *
  • pygrib *
  • toml *
  • xarray *
.github/workflows/black.yml actions
  • actions/checkout v2 composite
  • psf/black stable composite
.github/workflows/python-package-conda.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v3 composite
.github/workflows/tests-conda.yml actions
  • actions/cache v3 composite
  • actions/checkout v3 composite
  • conda-incubator/setup-miniconda v2 composite
.github/workflows/tests-python.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
requirements-test.txt pypi
  • pytest <8 test
ci/environment.yml pypi
environment.yml pypi
pyproject.toml pypi

Score: 19.647992972551467