A curated list of open technology projects to sustain a stable climate, energy supply, biodiversity and natural resources.

pypromice

Deliver data about the mass balance of the Greenland ice sheet in near real-time.
https://github.com/GEUS-Glaciology-and-Climate/pypromice

Category: Cryosphere
Sub Category: Glacier and Ice Sheets

Keywords

greenland weather weather-station

Last synced: about 22 hours ago
JSON representation

Repository metadata

Process AWS data from L0 (raw logger) through Lx (end user)

README.md

pypromice

PyPI version Anaconda-Server Badge Anaconda-Server Badge DOI Documentation Status

pypromice is designed for processing and handling PROMICE automated weather station (AWS) data.

It is envisioned for pypromice to be the go-to toolbox for handling and processing PROMICE and GC-Net datasets. New releases of pypromice are uploaded alongside PROMICE AWS data releases to our Dataverse for transparency purposes and to encourage collaboration on improving our data. Please visit the pypromice readthedocs for more information.

If you intend to use PROMICE AWS data and/or pypromice in your work, please cite these publications below, along with any other applicable PROMICE publications where possible:

Fausto, R.S., van As, D., Mankoff, K.D., Vandecrux, B., Citterio, M., Ahlstrøm, A.P., Andersen, S.B., Colgan, W., Karlsson, N.B., Kjeldsen, K.K., Korsgaard, N.J., Larsen, S.H., Nielsen, S., Pedersen, A.Ø., Shields, C.L., Solgaard, A.M., and Box, J.E. (2021) Programme for Monitoring of the Greenland Ice Sheet (PROMICE) automatic weather station data, Earth Syst. Sci. Data, 13, 3819–3845, https://doi.org/10.5194/essd-13-3819-2021

How, P., Wright, P.J., Mankoff, K., Vandecrux, B., Fausto, R.S. and Ahlstrøm, A.P. (2023) pypromice: A Python package for processing automated weather station data, Journal of Open Source Software, 8(86), 5298, https://doi.org/10.21105/joss.05298

How, P., Lund, M.C., Nielsen, R.B., Ahlstrøm, A.P., Fausto, R.S., Larsen, S.H., Mankoff, K.D., Vandecrux, B., Wright, P.J. (2023) pypromice, GEUS Dataverse, https://doi.org/10.22008/FK2/3TSBF0

Installation

Quick install

The latest release of pypromice can installed using conda or pip:

$ conda install pypromice -c conda-forge
$ pip install pypromice

The eccodes package for pypromice's post-processing functionality needs to be installed specifically in the pip distribution:

$ conda install eccodes -c conda-forge
$ pip install pypromice

And for the most up-to-date version of pypromice, the package can be cloned and installed directly from the repo:

$ pip install --upgrade git+http://github.com/GEUS-Glaciology-and-Climate/pypromice.git

Developer install

pypromice can be ran in an environment with the pypromice repo:

$ conda create --name pypromice python=3.8
$ conda activate pypromice
$ git clone [email protected]:GEUS-Glaciology-and-Climate/pypromice.git
$ cd pypromice/
$ pip install .

Citation (CITATION.cff)

cff-version: 1.2.0
title: pypromice
message: >-
  If you use this software, please cite it using the
  metadata from this file
type: software
authors:
  - given-names: Penelope
    family-names: How
    email: [email protected]
    affiliation: GEUS
    orcid: 'https://orcid.org/0000-0002-8088-8497'
  - given-names: Mads Christian
    family-names: Lund
    email: [email protected]
    affiliation: GEUS
    orcid: 'https://orcid.org/0009-0009-0446-8253'
  - given-names: Rasmus Bahbah
    family-names: Nielsen
    email: [email protected]
    affiliation: GEUS
    orcid: 'https://orcid.org/0000-0003-2342-639X'
  - given-names: Andreas P.
    family-names: Ahlstrøm
    email: [email protected]
    affiliation: GEUS
    orcid: 'https://orcid.org/0000-0001-8235-8070'
  - given-names: Robert S.
    email: [email protected]
    family-names: Fausto
    affiliation: GEUS
    orcid: 'https://orcid.org/0000-0003-1317-8185'
  - given-names: Signe Hillerup
    family-names: Larsen
    email: [email protected]
    affiliation: GEUS
    orcid: 'https://orcid.org/0000-0002-3656-3521'
  - given-names: Kenneth D.
    family-names: Mankoff
    email: [email protected]
    affiliation: NASA GISS
    orcid: 'https://orcid.org/0000-0001-5453-2019'
  - given-names: Baptiste
    family-names: Vandecrux
    email: [email protected]
    affiliation: GEUS
    orcid: 'https://orcid.org/0000-0002-4169-8973'
  - given-names: Patrick J.
    family-names: Wright
    orcid: 'https://orcid.org/0000-0003-2999-9076'
    affiliation: Synoptic
    email: [email protected]
identifiers:
  - type: doi
    value: 10.21105/joss.05298
    description: JOSS software paper
  - type: doi
    value: 10.22008/FK2/3TSBF0
    description: Dataverse for releases
repository-code: 'https://github.com/GEUS-Glaciology-and-Climate/pypromice'
url: 'https://pypromice.readthedocs.io/'
keywords:
  - weather
  - weather-station
  - greenland
  - python
license: GPL-2.0

Owner metadata


GitHub Events

Total
Last Year

Committers metadata

Last synced: 7 days ago

Total Commits: 790
Total Committers: 10
Avg Commits per committer: 79.0
Development Distribution Score (DDS): 0.713

Commits in past year: 331
Committers in past year: 3
Avg Commits per committer in past year: 110.333
Development Distribution Score (DDS) in past year: 0.486

Name Email Commits
Baptiste Vandecrux 3****x 227
PennyHow p****o@g****k 194
Mads Christian Lund m****u@g****k 154
Kenneth D. Mankoff m****f@g****m 107
Patrick Wright p****r@g****k 87
Penny How p****o@g****1 14
Rasmus Bahbah Nielsen 1****h 3
Ubuntu a****s@a****t 2
Johannes Röttenbacher 4****r 1
Andreas P. Ahlstrøm 8****2 1

Committer domains:


Issue and Pull Request metadata

Last synced: 2 days ago

Total issues: 138
Total pull requests: 164
Average time to close issues: 8 months
Average time to close pull requests: 13 days
Total issue authors: 11
Total pull request authors: 6
Average comments per issue: 1.78
Average comments per pull request: 0.78
Merged pull request: 123
Bot issues: 0
Bot pull requests: 0

Past year issues: 36
Past year pull requests: 75
Past year average time to close issues: about 1 month
Past year average time to close pull requests: 14 days
Past year issue authors: 4
Past year pull request authors: 3
Past year average comments per issue: 0.78
Past year average comments per pull request: 0.67
Past year merged pull request: 47
Past year bot issues: 0
Past year bot pull requests: 0

More stats: https://issues.ecosyste.ms/repositories/lookup?url=https://github.com/GEUS-Glaciology-and-Climate/pypromice

Top Issue Authors

  • BaptisteVandecrux (65)
  • PennyHow (30)
  • mankoff (21)
  • patrickjwright (9)
  • ladsmund (4)
  • jroettenbacher (3)
  • jasonebox (2)
  • robertfausto (1)
  • fsn1995 (1)
  • simonrp84 (1)
  • RasmusBahbah (1)

Top Pull Request Authors

  • BaptisteVandecrux (57)
  • PennyHow (56)
  • ladsmund (31)
  • patrickjwright (13)
  • RasmusBahbah (6)
  • jroettenbacher (1)

Top Issue Labels

  • enhancement (28)
  • L0 (13)
  • bug (11)
  • documentation (9)
  • fixed in future release (8)
  • L3 (8)
  • v4 (Py) (6)
  • L1 (6)
  • TX (6)
  • L2 (6)
  • v3 (IDL) (4)
  • L0M (3)
  • raw (2)
  • help wanted (1)
  • question (1)
  • OOL (1)
  • Data validation (1)

Top Pull Request Labels

  • documentation (7)
  • enhancement (5)
  • bug (5)

Package metadata

pypi.org: pypromice

PROMICE/GC-Net data processing toolbox

  • Homepage: https://github.com/GEUS-Glaciology-and-Climate/pypromice
  • Documentation: https://pypromice.readthedocs.io
  • Licenses: GNU General Public License v2 (GPLv2)
  • Latest release: 1.5.1 (published about 1 month ago)
  • Last Synced: 2025-04-25T14:03:49.220Z (2 days ago)
  • Versions: 17
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 716 Last month
  • Rankings:
    • Dependent packages count: 7.486%
    • Forks count: 17.068%
    • Stargazers count: 17.221%
    • Average: 31.245%
    • Downloads: 44.676%
    • Dependent repos count: 69.772%
  • Maintainers (1)

Dependencies

setup.py pypi
  • bottleneck *
  • netcdf4 *
  • numpy *
  • pandas *
  • scipy *
  • toml *
  • xarray *
.github/workflows/dataverse_workflow.yml actions
  • IQSS/dataverse-uploader v1.3 composite
docs/requirements.txt pypi
  • datetime *
  • eccodes *
  • numpy *
  • pandas *
  • sklearn *
  • sphinx_rtd_theme *
  • toml *
  • xarray *
.github/workflows/joss-pdf.yml actions
  • actions/checkout v2 composite
  • actions/upload-artifact v1 composite
  • openjournals/openjournals-draft-action master composite
.github/workflows/process_test.yml actions
  • actions/checkout v2 composite
  • actions/setup-python v2 composite
  • actions/upload-artifact v3 composite
.github/workflows/pypi-publish.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v3 composite
  • pypa/gh-action-pypi-publish 27b31702a0e7fc50959f5ad993c78deac1bdfc29 composite
.github/workflows/unit_test.yml actions
  • actions/checkout v2 composite
  • actions/setup-python v2 composite
environment.yml pypi

Score: 13.052048203489303