MOOC Machine Learning in Weather & Climate
Explore the application of Machine Learning across the main stages of numerical weather and climate prediction.
https://github.com/ecmwf-projects/mooc-machine-learning-weather-climate
Category: Sustainable Development
Sub Category: Education
Last synced: about 2 hours ago
JSON representation
Repository metadata
- Host: GitHub
- URL: https://github.com/ecmwf-projects/mooc-machine-learning-weather-climate
- Owner: ecmwf-projects
- License: apache-2.0
- Created: 2023-01-09T09:05:20.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2025-03-12T10:55:47.000Z (about 2 months ago)
- Last Synced: 2025-03-18T17:03:05.492Z (about 1 month ago)
- Language: Jupyter Notebook
- Size: 33.3 MB
- Stars: 194
- Watchers: 14
- Forks: 173
- Open Issues: 10
- Releases: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
README.md
MOOC Machine Learning in Weather & Climate - Jupyter notebook exercises
This repository hosts the Jupyter notebook based exercises of the Massive Open Online Course (MOOC) on Machine Learning in Weather & Climate, which can now be found on ECMWF's learning platform https://learning.ecmwf.int/.
The notebook files can be found in the subdirectories corresponding to each tier of the MOOC. These include the following:
Tier 1 notebooks (ML in Weather & Climate)
In this tier there is only one notebook that demonstrates how to build a simple neural network on the WeatherBench dataset.
Tier 2 notebooks (Concepts of Machine Learning)
In this tier there are notebooks for each module that provide practical guidance on key concepts of Machine Learning.
Tier 3 notebooks (Practical ML Applications in Weather & Climate)
Each module of this tier contains notebooks that demonstrate practical applications of Machine Learning in the various stages of Numerical Weather and Climate prediction.
How to run the notebooks
The notebooks can either be downloaded and run on participants' own computers, or they can be run directly in various cloud environments. The advantage of the latter is that no software needs to be installed locally. In each notebook a number of options are provided where the notebook can be run. These may include the following:
License
Unless otherwise stated, the notebooks fall under Apache License 2.0. In applying this licence, ECMWF does not waive the privileges and immunities granted to it by virtue of its status as an intergovernmental organisation nor does it submit to any jurisdiction.
Owner metadata
- Name: ECMWF projects
- Login: ecmwf-projects
- Email:
- Kind: organization
- Description: Projects of ECMWF for working with weather and climate data
- Website: www.ecmwf.int
- Location: United Kingdom
- Twitter:
- Company:
- Icon url: https://avatars.githubusercontent.com/u/75486320?v=4
- Repositories: 39
- Last ynced at: 2024-04-16T01:06:29.543Z
- Profile URL: https://github.com/ecmwf-projects
GitHub Events
Total
- Issues event: 1
- Watch event: 12
- Issue comment event: 3
- Push event: 1
- Pull request event: 5
- Fork event: 10
Last Year
- Issues event: 1
- Watch event: 12
- Issue comment event: 3
- Push event: 1
- Pull request event: 5
- Fork event: 10
Committers metadata
Last synced: 6 days ago
Total Commits: 139
Total Committers: 15
Avg Commits per committer: 9.267
Development Distribution Score (DDS): 0.662
Commits in past year: 1
Committers in past year: 1
Avg Commits per committer in past year: 1.0
Development Distribution Score (DDS) in past year: 0.0
Name | Commits | |
---|---|---|
Florian Pinault | F****t@e****t | 47 |
Chris Stewart | 6****f | 33 |
Mariana Clare | m****7@i****k | 21 |
siham garroussi | m****g@s****l | 13 |
Mariana Clare | 3****7 | 6 |
brajard | j****d@u****r | 6 |
b8raoult | 5****t | 3 |
Jesper Dramsch | j****r@d****t | 2 |
gpanegrossi | 1****i | 2 |
Marc Bocquet | m****t@e****r | 1 |
Matthew Chantry | m****y@e****t | 1 |
Virginia Poli | v****i@P****t | 1 |
dcasella79 | d****l@g****m | 1 |
Jussi Leinonen | j****n@m****h | 1 |
Randy Chase | r****2@R****l | 1 |
Committer domains:
- ecmwf.int: 2
- meteoswiss.ch: 1
- poli-lp-smr.smr.arpa.emr.net: 1
- enpc.fr: 1
- dramsch.net: 1
- upmc.fr: 1
- ic.ac.uk: 1
Issue and Pull Request metadata
Last synced: 1 day ago
Total issues: 7
Total pull requests: 25
Average time to close issues: 2 days
Average time to close pull requests: about 17 hours
Total issue authors: 7
Total pull request authors: 14
Average comments per issue: 0.29
Average comments per pull request: 0.8
Merged pull request: 15
Bot issues: 0
Bot pull requests: 0
Past year issues: 2
Past year pull requests: 5
Past year average time to close issues: N/A
Past year average time to close pull requests: about 1 hour
Past year issue authors: 2
Past year pull request authors: 3
Past year average comments per issue: 0.5
Past year average comments per pull request: 0.6
Past year merged pull request: 0
Past year bot issues: 0
Past year bot pull requests: 0
Top Issue Authors
- iago-pssjd (1)
- daniloceano (1)
- jcmt (1)
- willsmithorg (1)
- jpcurbelo (1)
- alexgag11 (1)
- sunny-bak (1)
Top Pull Request Authors
- brajard (5)
- gpanegrossi (4)
- jcmt (3)
- JesperDramsch (2)
- dopplerchase (2)
- virginiapoli (1)
- willsmithorg (1)
- ArthurOtte (1)
- b8raoult (1)
- stewartchrisecmwf (1)
- jleinonen (1)
- mchantry (1)
- syam5g (1)
- dcasella79 (1)
Top Issue Labels
Top Pull Request Labels
Dependencies
- actions/checkout v2 composite
- actions/setup-python v2 composite
- ipykernel * test
- nbconvert * test
- nbformat * test
- pytest * test
- climetlab *
- black * development
- flake8 * development
- isort * development
- climetlab >=0.10.0
- ipykernel * test
- nbconvert * test
- nbformat * test
- pytest * test
- climetlab-mltc-surface-observation-postprocessing >=0.3.0
- matplotlib *
- numpy *
- pytorch-lightning *
- scikit-learn *
- torch *
- climetlab-mltc-surface-observation-postprocessing >=0.3.0
- matplotlib *
- numpy *
- scikit-learn *
- tensorflow *
- folium *
- geopandas *
- mapclassify *
- matplotlib *
- numpy *
- openpyxl *
- pandas *
- sklearn *
- tqdm *
- tslearn *
- numpy
- tensorflow
- xarray
- ca-certificates
- certifi
- ipywidgets
- jupyterlab
- matplotlib
- numpy
- openssl
- pydot
- scikit-learn
- seaborn
- tensorflow
- tqdm
- _py-xgboost-mutex 2.0
- appdirs 1.4.4
- appnope 0.1.2
- asttokens 2.0.5
- atk-1.0 2.38.0
- backcall 0.2.0
- brotli 1.0.9
- brotli-bin 1.0.9
- brotlipy 0.7.0
- bzip2 1.0.8
- ca-certificates 2023.01.10
- cairo 1.16.0
- catboost 1.1.1
- cctools_osx-64 973.0.1
- certifi 2022.12.7
- cffi 1.15.1
- charset-normalizer 2.1.1
- clang 13.0.1
- clang-13 13.0.1
- clang_osx-64 13.0.1
- clangxx 13.0.1
- clangxx_osx-64 13.0.1
- cloudpickle 2.2.1
- cmdstan 2.29.2
- cmdstanpy 1.1.0
- colorama 0.4.6
- comm 0.1.2
- compiler-rt 13.0.1
- compiler-rt_osx-64 13.0.1
- contourpy 1.0.7
- convertdate 2.4.0
- cryptography 39.0.0
- cycler 0.11.0
- cython 0.29.33
- debugpy 1.5.1
- decorator 5.1.1
- entrypoints 0.4
- ephem 4.1.4
- executing 0.8.3
- expat 2.5.0
- font-ttf-dejavu-sans-mono 2.37
- font-ttf-inconsolata 3.000
- font-ttf-source-code-pro 2.038
- font-ttf-ubuntu 0.83
- fontconfig 2.14.2
- fonts-conda-ecosystem 1
- fonts-conda-forge 1
- fonttools 4.38.0
- freetype 2.12.1
- fribidi 1.0.10
- fsspec 2023.1.0
- gdk-pixbuf 2.42.10
- gettext 0.21.1
- giflib 5.2.1
- graphite2 1.3.13
- graphviz 7.1.0
- gtk2 2.24.33
- gts 0.7.6
- harfbuzz 6.0.0
- hijri-converter 2.2.4
- holidays 0.19
- icu 70.1
- idna 3.4
- ipykernel 6.19.2
- ipython 8.8.0
- jedi 0.18.1
- joblib 1.2.0
- jpeg 9e
- jupyter_client 7.4.8
- jupyter_core 5.1.1
- kiwisolver 1.4.4
- korean_lunar_calendar 0.3.1
- lcms2 2.14
- ld64_osx-64 609
- lerc 4.0.0
- libblas 3.9.0
- libbrotlicommon 1.0.9
- libbrotlidec 1.0.9
- libbrotlienc 1.0.9
- libcblas 3.9.0
- libclang-cpp13 13.0.1
- libcxx 14.0.6
- libdeflate 1.17
- libffi 3.4.2
- libgd 2.3.3
- libgfortran 5.0.0
- libgfortran5 11.3.0
- libglib 2.74.1
- libiconv 1.17
- libjpeg-turbo 2.1.4
- liblapack 3.9.0
- libllvm11 11.1.0
- libllvm13 13.0.1
- libllvm14 14.0.6
- libopenblas 0.3.21
- libpng 1.6.39
- libprotobuf 3.21.12
- librsvg 2.54.4
- libsodium 1.0.18
- libsqlite 3.40.0
- libtiff 4.5.0
- libtool 2.4.7
- libwebp 1.2.4
- libwebp-base 1.2.4
- libxcb 1.13
- libxgboost 1.7.1
- libxml2 2.10.3
- libzlib 1.2.13
- lightgbm 3.3.5
- lightning-utilities 0.6.0.post0
- llvm-openmp 15.0.7
- llvm-tools 13.0.1
- llvmlite 0.39.1
- lunarcalendar 0.0.9
- make 4.3
- matplotlib-base 3.6.3
- matplotlib-inline 0.1.6
- mkl 2022.2.1
- munkres 1.1.4
- ncurses 6.3
- nest-asyncio 1.5.6
- nfoursid 1.0.1
- ninja 1.11.0
- numba 0.56.4
- numpy 1.23.5
- openjpeg 2.5.0
- openssl 3.0.7
- packaging 23.0
- pandas 1.5.3
- pango 1.50.12
- parso 0.8.3
- patsy 0.5.3
- pcre2 10.40
- pexpect 4.8.0
- pickleshare 0.7.5
- pillow 9.4.0
- pip 23.0
- pixman 0.40.0
- platformdirs 2.5.2
- plotly 5.13.0
- pmdarima 2.0.2
- pooch 1.6.0
- prompt-toolkit 3.0.36
- prophet 1.1.2
- psutil 5.9.0
- pthread-stubs 0.4
- ptyprocess 0.7.0
- pure_eval 0.2.2
- py-xgboost 1.7.1
- pycparser 2.21
- pygments 2.11.2
- pymeeus 0.5.12
- pyod 1.0.7
- pyopenssl 23.0.0
- pyparsing 3.0.9
- pysocks 1.7.1
- python 3.10.8
- python-dateutil 2.8.2
- python-graphviz 0.20.1
- python_abi 3.10
- pytorch 1.13.1
- pytorch-lightning 1.9.0
- pytz 2022.7.1
- pyyaml 6.0
- pyzmq 23.2.0
- readline 8.1.2
- requests 2.28.2
- scikit-learn 1.2.1
- scipy 1.10.0
- setuptools 66.1.1
- shap 0.41.0
- sigtool 0.1.3
- six 1.16.0
- sleef 3.5.1
- slicer 0.0.7
- stack_data 0.2.0
- statsforecast 1.4.0
- statsmodels 0.13.5
- tapi 1100.0.11
- tbats 1.1.1
- tbb 2021.7.0
- tbb-devel 2021.7.0
- tenacity 8.1.0
- threadpoolctl 3.1.0
- tk 8.6.12
- torchmetrics 0.11.1
- tornado 6.2
- tqdm 4.64.1
- traitlets 5.7.1
- typing-extensions 4.4.0
- typing_extensions 4.4.0
- tzdata 2022g
- u8darts 0.23.1
- u8darts-all 0.23.1
- unicodedata2 15.0.0
- urllib3 1.26.14
- wcwidth 0.2.5
- wheel 0.38.4
- xarray 2023.1.0
- xgboost 1.7.1
- xorg-libxau 1.0.9
- xorg-libxdmcp 1.1.3
- xz 5.2.6
- yaml 0.2.5
- zeromq 4.3.4
- zlib 1.2.13
- zstd 1.5.2
- cartopy
- conda
- matplotlib
- numpy
- scikit-learn
- scipy
- seaborn
Score: 8.026170194946426