A curated list of open technology projects to sustain a stable climate, energy supply, biodiversity and natural resources.

MOOC Machine Learning in Weather & Climate

Explore the application of Machine Learning across the main stages of numerical weather and climate prediction.
https://github.com/ecmwf-projects/mooc-machine-learning-weather-climate

Category: Sustainable Development
Sub Category: Education

Last synced: about 2 hours ago
JSON representation

Repository metadata

README.md

MOOC Machine Learning in Weather & Climate - Jupyter notebook exercises

This repository hosts the Jupyter notebook based exercises of the Massive Open Online Course (MOOC) on Machine Learning in Weather & Climate, which can now be found on ECMWF's learning platform https://learning.ecmwf.int/.

The notebook files can be found in the subdirectories corresponding to each tier of the MOOC. These include the following:

Tier 1 notebooks (ML in Weather & Climate)

In this tier there is only one notebook that demonstrates how to build a simple neural network on the WeatherBench dataset.

Tier 2 notebooks (Concepts of Machine Learning)

In this tier there are notebooks for each module that provide practical guidance on key concepts of Machine Learning.

Tier 3 notebooks (Practical ML Applications in Weather & Climate)

Each module of this tier contains notebooks that demonstrate practical applications of Machine Learning in the various stages of Numerical Weather and Climate prediction.

How to run the notebooks

The notebooks can either be downloaded and run on participants' own computers, or they can be run directly in various cloud environments. The advantage of the latter is that no software needs to be installed locally. In each notebook a number of options are provided where the notebook can be run. These may include the following:

Colab Kaggle Deepnote
Colab Kaggle Deepnote
Colab requires a Google account, which can easily be set-up for free. Requires (free) registration with Kaggle. Once in, "switch on the internet" via settings. Requires (free) registration. Deepnote is a good platform also for collaboration.

License

Unless otherwise stated, the notebooks fall under Apache License 2.0. In applying this licence, ECMWF does not waive the privileges and immunities granted to it by virtue of its status as an intergovernmental organisation nor does it submit to any jurisdiction.


Owner metadata


GitHub Events

Total
Last Year

Committers metadata

Last synced: 6 days ago

Total Commits: 139
Total Committers: 15
Avg Commits per committer: 9.267
Development Distribution Score (DDS): 0.662

Commits in past year: 1
Committers in past year: 1
Avg Commits per committer in past year: 1.0
Development Distribution Score (DDS) in past year: 0.0

Name Email Commits
Florian Pinault F****t@e****t 47
Chris Stewart 6****f 33
Mariana Clare m****7@i****k 21
siham garroussi m****g@s****l 13
Mariana Clare 3****7 6
brajard j****d@u****r 6
b8raoult 5****t 3
Jesper Dramsch j****r@d****t 2
gpanegrossi 1****i 2
Marc Bocquet m****t@e****r 1
Matthew Chantry m****y@e****t 1
Virginia Poli v****i@P****t 1
dcasella79 d****l@g****m 1
Jussi Leinonen j****n@m****h 1
Randy Chase r****2@R****l 1

Committer domains:


Issue and Pull Request metadata

Last synced: 1 day ago

Total issues: 7
Total pull requests: 25
Average time to close issues: 2 days
Average time to close pull requests: about 17 hours
Total issue authors: 7
Total pull request authors: 14
Average comments per issue: 0.29
Average comments per pull request: 0.8
Merged pull request: 15
Bot issues: 0
Bot pull requests: 0

Past year issues: 2
Past year pull requests: 5
Past year average time to close issues: N/A
Past year average time to close pull requests: about 1 hour
Past year issue authors: 2
Past year pull request authors: 3
Past year average comments per issue: 0.5
Past year average comments per pull request: 0.6
Past year merged pull request: 0
Past year bot issues: 0
Past year bot pull requests: 0

More stats: https://issues.ecosyste.ms/repositories/lookup?url=https://github.com/ecmwf-projects/mooc-machine-learning-weather-climate

Top Issue Authors

  • iago-pssjd (1)
  • daniloceano (1)
  • jcmt (1)
  • willsmithorg (1)
  • jpcurbelo (1)
  • alexgag11 (1)
  • sunny-bak (1)

Top Pull Request Authors

  • brajard (5)
  • gpanegrossi (4)
  • jcmt (3)
  • JesperDramsch (2)
  • dopplerchase (2)
  • virginiapoli (1)
  • willsmithorg (1)
  • ArthurOtte (1)
  • b8raoult (1)
  • stewartchrisecmwf (1)
  • jleinonen (1)
  • mchantry (1)
  • syam5g (1)
  • dcasella79 (1)

Top Issue Labels

Top Pull Request Labels


Dependencies

.github/workflows/test-notebooks.yml actions
  • actions/checkout v2 composite
  • actions/setup-python v2 composite
tests/requirements_tests.txt pypi
  • ipykernel * test
  • nbconvert * test
  • nbformat * test
  • pytest * test
tier_2/data_handling/climetlab-my-plugin-solution/requirements.txt pypi
  • climetlab *
tier_2/data_handling/climetlab-my-plugin-solution/requirements_dev.txt pypi
  • black * development
  • flake8 * development
  • isort * development
tier_2/data_handling/climetlab-my-plugin-solution/setup.py pypi
  • climetlab >=0.10.0
tier_2/data_handling/climetlab-my-plugin-solution/tests/requirements_tests.txt pypi
  • ipykernel * test
  • nbconvert * test
  • nbformat * test
  • pytest * test
tier_2/deep_learning/requirements-pytorch.txt pypi
  • climetlab-mltc-surface-observation-postprocessing >=0.3.0
  • matplotlib *
  • numpy *
  • pytorch-lightning *
  • scikit-learn *
  • torch *
tier_2/deep_learning/requirements-tensorflow.txt pypi
  • climetlab-mltc-surface-observation-postprocessing >=0.3.0
  • matplotlib *
  • numpy *
  • scikit-learn *
  • tensorflow *
tier_3/ocean_climate/e3ci/requirements.txt pypi
  • folium *
  • geopandas *
  • mapclassify *
  • matplotlib *
  • numpy *
  • openpyxl *
  • pandas *
  • sklearn *
  • tqdm *
  • tslearn *
tier_1/environment.yml conda
  • numpy
  • tensorflow
  • xarray
tier_3/data_assimilation/environment.yaml conda
  • ca-certificates
  • certifi
  • ipywidgets
  • jupyterlab
  • matplotlib
  • numpy
  • openssl
  • pydot
  • scikit-learn
  • seaborn
  • tensorflow
  • tqdm
tier_3/observations/environment.yml conda
  • _py-xgboost-mutex 2.0
  • appdirs 1.4.4
  • appnope 0.1.2
  • asttokens 2.0.5
  • atk-1.0 2.38.0
  • backcall 0.2.0
  • brotli 1.0.9
  • brotli-bin 1.0.9
  • brotlipy 0.7.0
  • bzip2 1.0.8
  • ca-certificates 2023.01.10
  • cairo 1.16.0
  • catboost 1.1.1
  • cctools_osx-64 973.0.1
  • certifi 2022.12.7
  • cffi 1.15.1
  • charset-normalizer 2.1.1
  • clang 13.0.1
  • clang-13 13.0.1
  • clang_osx-64 13.0.1
  • clangxx 13.0.1
  • clangxx_osx-64 13.0.1
  • cloudpickle 2.2.1
  • cmdstan 2.29.2
  • cmdstanpy 1.1.0
  • colorama 0.4.6
  • comm 0.1.2
  • compiler-rt 13.0.1
  • compiler-rt_osx-64 13.0.1
  • contourpy 1.0.7
  • convertdate 2.4.0
  • cryptography 39.0.0
  • cycler 0.11.0
  • cython 0.29.33
  • debugpy 1.5.1
  • decorator 5.1.1
  • entrypoints 0.4
  • ephem 4.1.4
  • executing 0.8.3
  • expat 2.5.0
  • font-ttf-dejavu-sans-mono 2.37
  • font-ttf-inconsolata 3.000
  • font-ttf-source-code-pro 2.038
  • font-ttf-ubuntu 0.83
  • fontconfig 2.14.2
  • fonts-conda-ecosystem 1
  • fonts-conda-forge 1
  • fonttools 4.38.0
  • freetype 2.12.1
  • fribidi 1.0.10
  • fsspec 2023.1.0
  • gdk-pixbuf 2.42.10
  • gettext 0.21.1
  • giflib 5.2.1
  • graphite2 1.3.13
  • graphviz 7.1.0
  • gtk2 2.24.33
  • gts 0.7.6
  • harfbuzz 6.0.0
  • hijri-converter 2.2.4
  • holidays 0.19
  • icu 70.1
  • idna 3.4
  • ipykernel 6.19.2
  • ipython 8.8.0
  • jedi 0.18.1
  • joblib 1.2.0
  • jpeg 9e
  • jupyter_client 7.4.8
  • jupyter_core 5.1.1
  • kiwisolver 1.4.4
  • korean_lunar_calendar 0.3.1
  • lcms2 2.14
  • ld64_osx-64 609
  • lerc 4.0.0
  • libblas 3.9.0
  • libbrotlicommon 1.0.9
  • libbrotlidec 1.0.9
  • libbrotlienc 1.0.9
  • libcblas 3.9.0
  • libclang-cpp13 13.0.1
  • libcxx 14.0.6
  • libdeflate 1.17
  • libffi 3.4.2
  • libgd 2.3.3
  • libgfortran 5.0.0
  • libgfortran5 11.3.0
  • libglib 2.74.1
  • libiconv 1.17
  • libjpeg-turbo 2.1.4
  • liblapack 3.9.0
  • libllvm11 11.1.0
  • libllvm13 13.0.1
  • libllvm14 14.0.6
  • libopenblas 0.3.21
  • libpng 1.6.39
  • libprotobuf 3.21.12
  • librsvg 2.54.4
  • libsodium 1.0.18
  • libsqlite 3.40.0
  • libtiff 4.5.0
  • libtool 2.4.7
  • libwebp 1.2.4
  • libwebp-base 1.2.4
  • libxcb 1.13
  • libxgboost 1.7.1
  • libxml2 2.10.3
  • libzlib 1.2.13
  • lightgbm 3.3.5
  • lightning-utilities 0.6.0.post0
  • llvm-openmp 15.0.7
  • llvm-tools 13.0.1
  • llvmlite 0.39.1
  • lunarcalendar 0.0.9
  • make 4.3
  • matplotlib-base 3.6.3
  • matplotlib-inline 0.1.6
  • mkl 2022.2.1
  • munkres 1.1.4
  • ncurses 6.3
  • nest-asyncio 1.5.6
  • nfoursid 1.0.1
  • ninja 1.11.0
  • numba 0.56.4
  • numpy 1.23.5
  • openjpeg 2.5.0
  • openssl 3.0.7
  • packaging 23.0
  • pandas 1.5.3
  • pango 1.50.12
  • parso 0.8.3
  • patsy 0.5.3
  • pcre2 10.40
  • pexpect 4.8.0
  • pickleshare 0.7.5
  • pillow 9.4.0
  • pip 23.0
  • pixman 0.40.0
  • platformdirs 2.5.2
  • plotly 5.13.0
  • pmdarima 2.0.2
  • pooch 1.6.0
  • prompt-toolkit 3.0.36
  • prophet 1.1.2
  • psutil 5.9.0
  • pthread-stubs 0.4
  • ptyprocess 0.7.0
  • pure_eval 0.2.2
  • py-xgboost 1.7.1
  • pycparser 2.21
  • pygments 2.11.2
  • pymeeus 0.5.12
  • pyod 1.0.7
  • pyopenssl 23.0.0
  • pyparsing 3.0.9
  • pysocks 1.7.1
  • python 3.10.8
  • python-dateutil 2.8.2
  • python-graphviz 0.20.1
  • python_abi 3.10
  • pytorch 1.13.1
  • pytorch-lightning 1.9.0
  • pytz 2022.7.1
  • pyyaml 6.0
  • pyzmq 23.2.0
  • readline 8.1.2
  • requests 2.28.2
  • scikit-learn 1.2.1
  • scipy 1.10.0
  • setuptools 66.1.1
  • shap 0.41.0
  • sigtool 0.1.3
  • six 1.16.0
  • sleef 3.5.1
  • slicer 0.0.7
  • stack_data 0.2.0
  • statsforecast 1.4.0
  • statsmodels 0.13.5
  • tapi 1100.0.11
  • tbats 1.1.1
  • tbb 2021.7.0
  • tbb-devel 2021.7.0
  • tenacity 8.1.0
  • threadpoolctl 3.1.0
  • tk 8.6.12
  • torchmetrics 0.11.1
  • tornado 6.2
  • tqdm 4.64.1
  • traitlets 5.7.1
  • typing-extensions 4.4.0
  • typing_extensions 4.4.0
  • tzdata 2022g
  • u8darts 0.23.1
  • u8darts-all 0.23.1
  • unicodedata2 15.0.0
  • urllib3 1.26.14
  • wcwidth 0.2.5
  • wheel 0.38.4
  • xarray 2023.1.0
  • xgboost 1.7.1
  • xorg-libxau 1.0.9
  • xorg-libxdmcp 1.1.3
  • xz 5.2.6
  • yaml 0.2.5
  • zeromq 4.3.4
  • zlib 1.2.13
  • zstd 1.5.2
tier_3/ocean_climate/unsupervised_ml_ocean/environment.yml conda
  • cartopy
  • conda
  • matplotlib
  • numpy
  • scikit-learn
  • scipy
  • seaborn

Score: 8.026170194946426