AquaFetch
A Python package designed for the automated downloading, parsing, cleaning, and harmonization of freely available water resource datasets related to rainfall-runoff processes, surface water quality, and wastewater treatment.
https://github.com/hyex-research/aquafetch
Category: Hydrosphere
Sub Category: Ocean and Hydrology Data Access
Keywords
big-data database hydrology wastewater-treatment water water-quality
Keywords from Contributors
errors loss performance-metrics score
Last synced: about 13 hours ago
JSON representation
Repository metadata
A Unified Python Interface for Water Resource Data Acquisition
- Host: GitHub
- URL: https://github.com/hyex-research/aquafetch
- Owner: hyex-research
- License: agpl-3.0
- Created: 2025-01-19T12:17:46.000Z (11 months ago)
- Default Branch: master
- Last Pushed: 2025-11-20T17:21:55.000Z (about 1 month ago)
- Last Synced: 2025-12-08T03:53:20.019Z (17 days ago)
- Topics: big-data, database, hydrology, wastewater-treatment, water, water-quality
- Language: Python
- Homepage: https://aquafetch.readthedocs.io
- Size: 29.1 MB
- Stars: 12
- Watchers: 0
- Forks: 5
- Open Issues: 2
- Releases: 1
-
Metadata Files:
- Readme: readme.md
- Contributing: CONTRIBUTING.rst
readme.md
A Unified Python Interface for Water Resource Dataset Acquisition and Harmonization
AquaFetch is a Python package designed for the automated downloading, parsing, cleaning, and harmonization of freely available water resource datasets related to rainfall-runoff processes, surface water quality, and wastewater treatment. The package currently supports approximately 70 datasets, each containing between 1 to hundreds of parameters. It facilitates the downloading and transformation of raw data into consistent, easy-to-use, analysis-ready formats. This allows users to directly access and utilize the data without labor-intensive and time-consuming preprocessing.
The package comprises three submodules, each representing a different type of water resource data: rr for rainfall-runoff processes, wq for surface water quality, and wwt for wastewater treatment. The rr submodule offers data for 47,291 catchments worldwide, encompassing both dynamic and static features for each catchment. The dynamic features consist of observed streamflow and meteorological time series, averaged over the catchment area, available at daily and/or hourly time steps. Static features include constant parameters such as land use, soil, topography, and other physiographical characteristics, along with catchment boundaries. This submodule not only provides access to established rainfall-runoff datasets such as CAMELS and LamaH but also introduces new datasets compiled for the first time from publicly accessible online data sources. The wq submodule offers access to 17 surface water quality datasets, each containing various water quality parameters measured across different spaces and times. The wwt submodule provides access to over 20,000 experimental measurements related to wastewater treatment techniques such as adsorption, photocatalysis, membrane filtration, and sonolysis.
The development of AquaFetch was inspired by the growing availability of diverse water resource datasets in recent years. As a community-driven project, the codebase is structured to allow contributors to easily add new datasets, ensuring the package continues to expand and evolve to meet future needs.
Installation
You can install AquaFetch using pip
pip install aqua-fetch
The package can be installed using GitHub link from the master branch
python -m pip install git+https://github.com/hyex-research/AquaFetch.git
To install from a specific branch such as dev branch which contains more recent code
python -m pip install git+https://github.com/hyex-research/AquaFetch.git@dev
The above code will install minimal depencies required to use the library which include
numpy, pandas and requests. To install the library with full list of dependencies use the
all option during installation.
python -m pip install "aqua-fetch[all] @ git+https://github.com/hyex-research/AquaFetch.git"
This will install addtional optional depencdies which include xarray, fiona, netCDF4 and easy_mpl.
Usage
The following sections describe brief usage of datasets from each of the three submodules i.e. rr, wq and wwt.
For detailed usage examples see docs
The core of rr sub-module is the RainfallRunoff class. This class
fetches dynamic features (catchment averaged hydrometeorological data at daily or sub-daily timesteps),
static features (catchment characteristics related to topography, soil, land use-land cover, or hydrological indices that have constant values over time)
and the catchment boundary. The following example demonstrates how to fetch data for CAMELS_SE. However, the method is the same for all available rainfall-runoff datasets.
from aqua_fetch import RainfallRunoff
dataset = RainfallRunoff('CAMELS_SE') # instead of CAMELS_SE, you can provide any other dataset name
# get data by station id
_, dynamic = dataset.fetch(stations='5', as_dataframe=True)
df = dynamic['5'] # dynamic is a dictionary of with keys as station names and values as DataFrames
df.shape # -> (21915, 4)
# get name of all stations as list
stns = dataset.stations()
len(stns) # -> 50
# get data of 10 % of stations as dataframe
_, dynamic = dataset.fetch(0.1, as_dataframe=True)
len(dynamic) # 5
# dynamic is a dictionary whose values are dataframes of dynamic features
[df.shape for df in dynamic.values()] # [(21915, 4), (21915, 4), (21915, 4), (21915, 4), (21915, 4)]
# get the data of a single (randomly selected) station
_, dynamic = dataset.fetch(stations=1, as_dataframe=True)
len(dynamic) # 1
# get names of available dynamic features
dataset.dynamic_features
# get only selected dynamic features
_, dynamic = dataset.fetch('5', as_dataframe=True,
... dynamic_features=['pcp_mm', 'airtemp_C_mean', 'q_cms_obs'])
dynamic['5'].shape # (21915, 3)
# get names of available static features
dataset.static_features
# get data of 10 random stations
_, dynamic = dataset.fetch(10, as_dataframe=True)
len(dynamic) # 10
# If we want to get both static and dynamic data
static, dynamic = dataset.fetch(stations='5', static_features="all", as_dataframe=True)
static.shape, len(dynamic), dynamic['5'].shape # ((1, 76), 1, (21915, 4))
# If we don't set as_dataframe=True and have xarray installed then the returned data will be a xarray Dataset
_, dynamic = dataset.fetch(10)
type(dynamic) # -> xarray.core.dataset.Dataset
dynamic.dims # -> FrozenMappingWarningOnValuesAccess({'time': 21915, 'dynamic_features': 4})
len(dynamic.data_vars) # -> 10
# get coordinates of all stations
coords = dataset.stn_coords()
coords.shape # (50, 2)
# get coordinates of station whose id is 5
dataset.stn_coords('5') # 68.035599 21.9758
# get coordinates of two stations
dataset.stn_coords(['5', '736'])
# get area of a single station
dataset.area('5')
# get coordinates of two stations
dataset.area(['5', '736'])
# if fiona library is installed we can get the boundary as fiona Geometry
dataset.get_boundary('5')
The datasets related to surface water quality are available using functional or objected-oriented API
depending upon the complexity of the dataset. The following example shows usage of two surface water
quality related datasets. For complete name of Python functions and classes see documentation
from aqua_fetch import busan_beach
dataframe = busan_beach()
dataframe.shape # (1446, 14)
dataframe = busan_beach(target=['tetx_coppml', 'sul1_coppml'])
dataframe.shape # (1446, 15)
from aqua_fetch import GRQA
ds = GRQA(path="/path/to/data")
print(ds.parameters)
len(ds.parameters) # 42
country = "Pakistan"
len(ds.fetch_parameter('TEMP', country=country))
The datasets for wastewater treatment are all available in function API design. These datasets consist of experimental conducted
to remove certain pollutants from wastewater. For complete list of functions, see documentation
from aqua_fetch import ec_removal_biochar
data, *_ = ec_removal_biochar()
data.shape # -> (3757, 27)
data, encoders = ec_removal_biochar(encoding="le")
data.shape # -> (3757, 27)
from aqua_fetch import mg_degradation
mg_data, encoders = mg_degradation()
mg_data.shape # -> (1200, 12)
# the default encoding is None, but if we want to use one hot encoder
mg_data_ohe, encoders = mg_degradation(encoding="ohe")
mg_data_ohe.shape # -> (1200, 31)
Summary of rainfall runoff Datasets
| Name | Num. of daily stations | Num. of hourly stations | Num. of dynamic features | Num. of static features | Temporal Coverage | Spatial Coverage | Ref. |
|---|---|---|---|---|---|---|---|
| Arcticnet | 106 | 27 | 35 | 1979 - 2003 | Arctic (Russia) | R-Arcticnet | |
| Bull | 484 | 55 | 214 | 1990 - 2020 | Spain | Aparicio et al., 2024 | |
| CABra | 735 | 13 | 87 | 1980 - 2010 | Brazil | Almagro et al., 2021 | |
| CAMELSH | 5767 | 13 | 779 | 1900 - 2024 | United States of America | Tran et al., (2025) | |
| CAMELS_AUS | 222, 561 | 28 | 166, 187 | 1900 - 2018 | Australia | Flower et al., 2021 | |
| CAMELS_BR | 897 | 10 | 67 | 1920 - 2019 | Brazil | Chagas et al., 2020 | |
| CAMELS_COL | 347 | 6 | 255 | 1981 - 2022 | Columbia | Jimenez et al., 2025 | |
| CAMELS_CH | 331 | 9 | 209 | 1981 - 2020 | Switzerland, Austria, France, Germany Italy | Hoege et al., 2023 | |
| CAMELS_CL | 516 | 12 | 104 | 1913 - 2018 | Chile | Alvarez-Garreton et al., 2018 | |
| CAMELS_DK | 304 | 13 | 119 | 1989 - 2023 | Denmark | Liu et al., 2024 | |
| CAMELS_DE | 1555 | 21 | 111 | 1951 - 2020 | Germany | Loritz et al., 2024 | |
| CAMELS_FI | 320 | 111 | 1963 - 2023 | Finland | Seppä, I et al., 2025 | ||
| CAMELS_FR | 654 | 22 | 344 | 1970 - 2021 | France | Delaigue et al., 2024 | |
| CAMELS_GB | 671 | 10 | 145 | 1970 - 2015 | Britain | Coxon et al., 2020 | |
| CAMELS_IND | 472 | 20 | 210 | 1980 - 2020 | India | Mangukiya et al., 2024 | |
| CAMELS_LUX | 56 | 56 | 25 | 61 | 2004 - 2021 | Luxumbourg | Nijzink et al., 2025 |
| CAMELS_SE | 50 | 4 | 76 | 1961 - 2020 | Sweden | Teutschbein et al., 2024 | |
| CAMELS_SK | 178 | 17 | 215 | 2000 - 2019 | South Korea | Kim et al., 2025 | |
| CAMELS_NZ | 369 | 369 | 5 | 39 | 1972 - 2024 | New Zealand | Bushra, et al., 2025 |
| CAMELS_US | 671 | 8 | 59 | 1980 - 2014 | USA | Newman et al., 2014 | |
| Caravan_DK | 308 | 38 | 211 | 1981 - 2020 | Denmark | Koch, J. (2022) | |
| CCAM | 102 | 16 | 124 | 1990 - 2020 | China | Hao et al., 2021 | |
| Finland | 669 | 10 | 214 | 2012 - 2023 | Finland | Nascimento et al., 2024 & ymparisto.fi | |
| GRDCCaravan | 5357 | 39 | 211 | 1950 - 2023 | Global | Faerber et al., 2023 | |
| HYSETS | 14425 | 20 | 30 | 1950 - 2018 | North America | Arsenault et al., 2020 | |
| HYPE | 561 | 9 | 3 | 1985 - 2019 | Costa Rica | Arciniega-Esparza and Birkel, 2020 | |
| Ireland | 464 | 10 | 214 | 1992 - 2020 | Ireland | Nascimento et al., 2024 & EPA Ireland | |
| Italy | 294 | 10 | 214 | 1992 - 2020 | Italy | Nascimento et al., 2024 & hiscentral.isprambiente.gov.it | |
| Japan | 751 | 696 | 27 | 35 | 1979 - 2022 | Japan | Peirong et al., 2023 & river.go.jp |
| LamaHCE | 859 | 859 | 22 | 80 | 1981 - 2019 | Central Europe | Klingler et al., 2021 |
| LamaHIce | 111 | 111 | 36 | 154 | 1950 - 2021 | Iceland | Helgason and Nijssen 2024 |
| NPCTRCatchments | - | 7 | 14 | 14 | 2013 - 2019 | Canada | Korver et al., 2022 |
| Poland | 1287 | 10 | 214 | 1992 - 2020 | Poland | Nascimento et al., 2024 & danepubliczne.imgw.pl | |
| Portugal | 280 | 10 | 214 | 1992 - 2020 | Portugal | Nascimento et al., 2024 & SNIRH Portugal | |
| RRLuleaSweden | 1 | 2 | 0 | 2016 - 2019 | Lulea (Sweden) | Broekhuizen et al., 2020 | |
| Simbi | 70 | 3 | 232 | 1920 - 1940 | Haiti | Bathelemy et al., 2024 | |
| Slovenia | 117 | 3 | 214 | 1950 - 2023 | Slovenia | Nascimento et al., 2024 & vode.arso.gov.si | |
| Spain | 889 | 27 | 35 | 1979 - 2020 | Spain | Peirong et al., 2023 & ceh-flumen64 | |
| Thailand | 73 | 27 | 35 | 1980 - 1999 | Thailand | Peirong et al., 2023 & RID project | |
| USGS | 12004 | 1541 | 5 | 27 | 1950 - 2018 | USA | USGS nwis |
| WaterBenchIowa | 125 | 3 | 7 | 2011 - 2018 | Iowa (USA) | Demir et al., 2022 |
Summary of Water Quality Datasets
| Name | Variables Covered | Number of Stations | Temporal Coverage | Spatial Coverage | Ref. |
|---|---|---|---|---|---|
| Busan Beach | 14 | 1 | 2018 - 2019 | Busan, South Korea | Jang et al., 2021 |
| Buzzards Bay | 64 | 1992 - 2018 | Buzzards Bay (USA) | Jakuba et al., 2021 | |
| CamelsChem | 28 | 671 | 1980 - 2018 | Conterminous USA | Sterle et al., 2024 |
| CamelsCHChem | 40 | 115 | 1980 - 2020 | Swtizerland | Nascimento et al., 2025 |
| Ecoli Mekong River | 10 | 2011 - 2021 | Mekong river (Houay Pano) | Boithias et al., 2022 | |
| Ecoli Mekong River (Laos) | 10 | 2011 - 2021 | Mekong River (Laos) | Boithias et al., 2022 | |
| Ecoli Houay Pano (Laos) | 10 | 2011 - 2021 | Houay Pano (Laos) | Boithias et al., 2022 | |
| GRQA | 42 | 1898 - 2020 | Global | Virro et al., 2021 | |
| GRiMeDB | 1 | 5029 | 1973 - 2021 | Global | Stanley et al., 2023 |
| Oligotrend | 17 | 1846 | 1986 - 2022 | Global | Minaudo et al., 2025 |
| Quadica | 10 | 1386 | 1950 - 2018 | Germany | Ebeling et al., 2022 |
| RC4USCoast | 21 | 140 | 1850 - 2020 | USA | Gomez et al., 2022 |
| SanFrancisco Bay | 18 | 1969 - 2015 | Sans Francisco Bay (USA) | Cloern et al., 2017 | |
| Selune River | 5 | 2021 - 2022 | Selune River (France) | Moustapha Ba et al., 2023 | |
| Sylt Roads | 15 | 3 | 1973 - 2019 | North Sea (Arctic) | Rick et al., 2023 |
| SWatCh | 24 | 26322 | 1960 - 2022 | Global | Lobke et al., 2022 |
| White Clay Creek | 2 | 1977 - 2017 | White Clay Creek (USA) | Newbold and Damiano 2013 |
Summary of datasets related to wastewater treatment
| Treatment Process | Parameters | Target Pollutant | Data Points | Reference |
|---|---|---|---|---|
| Adsorption | 26 | Emerg. Contaminants | 3,757 | Jaffari et al., 2023 |
| Adsorption | 15 | Cr | 219 | Ishtiaq et al., 2024 |
| Adsorption | 30 | (Cr(VI), Co(II), Sr(II), Ba(II), I, and Fe ) | 1,518 | Jaffari et al., 2023 |
| Adsorption | 30 | po4 | 5,014 | Iftikhar et al., 2024 |
| Adsorption | 12 | Industrial Dye | 1,514 | Iftikhar et al., 2023 |
| Adsorption | 17 | Cu, Zn, Pb, Cd, Ni, and As | 689 | Shen et al., 2023 |
| Adsorption | 8 | P | 504 | Leng et al., 2024 |
| Adsorption | 8 | N | 211 | Leng et al., 2024 |
| Adsorption | 13 | As | 1,605 | Huang et al., 2024 |
| Photocatalysis | 11 | Melachite Green | 1,200 | Jaffari et a., 2023 |
| Photocatalysis | 23 | Dyes | 1,527 | Kim et al., 2024 |
| Photocatalysis | 15 | 2,4,Dichlorophenoxyacetic acid | 1,044 | Kim et al., 2024 |
| Photocatalysis | - | - | 2,078 | submitted et al., 2024 |
| Photocatalysis | 8 | Tetracycline | 374 | Abdi et al., 2022 |
| Photocatalysis | 7 | TiO2 | 446 | Jiang et al., 2020 |
| Photocatalysis | 8 | multiple | 457 | Jiang et al., 2020 |
| membrane | 18 | micropollutants | 1,906 | Jeong et al., 2021 |
| membrane | 18 | salts | 1,586 | Jeong et al., 2023 |
| sonolysis | 6 | Cyanobacteria | 314 | Jaffari et al., 2024 |
Owner metadata
- Name: KAUST HYdro-climatic EXtremes (HYEX) Research Group
- Login: hyex-research
- Email:
- Kind: organization
- Description:
- Website:
- Location:
- Twitter:
- Company:
- Icon url: https://avatars.githubusercontent.com/u/144527953?v=4
- Repositories: 1
- Last ynced at: 2025-01-19T14:04:55.899Z
- Profile URL: https://github.com/hyex-research
GitHub Events
Total
- Create event: 5
- Release event: 1
- Issues event: 2
- Watch event: 6
- Issue comment event: 10
- Member event: 3
- Push event: 85
- Pull request event: 10
- Fork event: 4
Last Year
- Create event: 5
- Release event: 1
- Issues event: 2
- Watch event: 6
- Issue comment event: 10
- Member event: 3
- Push event: 85
- Pull request event: 10
- Fork event: 4
Committers metadata
Last synced: 2 days ago
Total Commits: 264
Total Committers: 3
Avg Commits per committer: 88.0
Development Distribution Score (DDS): 0.072
Commits in past year: 166
Committers in past year: 2
Avg Commits per committer in past year: 83.0
Development Distribution Score (DDS) in past year: 0.096
| Name | Commits | |
|---|---|---|
| AtrCheema | a****6@y****m | 245 |
| Sara-Iftikhar | s****k@g****m | 18 |
| FazilaRubab | f****3@g****m | 1 |
Issue and Pull Request metadata
Last synced: 4 months ago
Total issues: 2
Total pull requests: 6
Average time to close issues: N/A
Average time to close pull requests: less than a minute
Total issue authors: 2
Total pull request authors: 1
Average comments per issue: 0.0
Average comments per pull request: 0.0
Merged pull request: 5
Bot issues: 0
Bot pull requests: 0
Past year issues: 2
Past year pull requests: 6
Past year average time to close issues: N/A
Past year average time to close pull requests: less than a minute
Past year issue authors: 2
Past year pull request authors: 1
Past year average comments per issue: 0.0
Past year average comments per pull request: 0.0
Past year merged pull request: 5
Past year bot issues: 0
Past year bot pull requests: 0
Top Issue Authors
- tamnva (1)
- cyn2003 (1)
Top Pull Request Authors
- AtrCheema (6)
Top Issue Labels
Top Pull Request Labels
Package metadata
- Total packages: 1
-
Total downloads:
- pypi: 973 last-month
- Total dependent packages: 0
- Total dependent repositories: 0
- Total versions: 4
- Total maintainers: 1
pypi.org: aqua-fetch
A Unified Python Interface for Water Resource Data Acquisition and harmonization
- Homepage: https://github.com/hyex-research/AquaFetch
- Documentation: https://aqua-fetch.readthedocs.io/
- Licenses: agpl-3.0
- Latest release: 1.0.0 (published 4 months ago)
- Last Synced: 2025-12-21T06:03:29.101Z (4 days ago)
- Versions: 4
- Dependent Packages: 0
- Dependent Repositories: 0
- Downloads: 973 Last month
-
Rankings:
- Dependent packages count: 9.736%
- Average: 32.273%
- Dependent repos count: 54.81%
- Maintainers (1)
Dependencies
- imageio *
- netcdf4 *
- pyshp *
- requests *
- seaborn *
- statsmodels *
- xarray *
- easy_mpl * development
- matplotlib * development
- openpyxl * development
- pandas <=2.1.4 development
- requests * development
- xarray <=2024.7.0 development
- ipykernel *
- nbsphinx *
- netcdf4 *
- numpy ==1.26.4
- openpyxl *
- pandas ==2.1.4
- requests *
- scipy *
- seaborn *
- sphinx *
- sphinx-gallery *
- sphinx-prompt *
- sphinx_copybutton *
- sphinx_issues *
- sphinx_rtd_theme ==2.0.0
- sphinx_toggleprompt *
- xarray ==2024.7.0
- numpy *
- pandas <=2.1.4
- requests *
Score: 10.619080921925903