A curated list of open technology projects to sustain a stable climate, energy supply, biodiversity and natural resources.

DeepForest

Python Package for Tree Crown Detection in Airborne RGB imagery.
https://github.com/weecology/DeepForest

Category: Biosphere
Sub Category: Forest Remote Sensing

Keywords from Contributors

environmental-monitoring

Last synced: about 18 hours ago
JSON representation

Repository metadata

Python Package for Airborne RGB machine learning

README.md

DeepForest

Github Actions
Documentation Status
Version
DOI

Conda-forge build status

Name Downloads Version Platforms
Conda Recipe Conda Downloads Conda Version Conda Platforms


What is DeepForest?

DeepForest is a python package for training and predicting ecological objects in airborne imagery. DeepForest currently comes with a tree crown object detection model and a bird detection model. Both are single class modules that can be extended to species classification based on new data. Users can extend these models by annotating and training custom models.

Documentation

DeepForest is documented on readthedocs

How does deepforest work?

DeepForest uses deep learning object detection networks to predict bounding boxes corresponding to individual trees in RGB imagery.
DeepForest is built on the object detection module from the torchvision package and designed to make training models for detection simpler.

For more about the motivation behind DeepForest, see some recent talks we have given on computer vision for ecology and practical applications to machine learning in environmental monitoring.

Where can I get help, learn from others, and report bugs?

Given the enormous array of forest types and image acquisition environments, it is unlikely that your image will be perfectly predicted by a prebuilt model. Below are some tips and some general guidelines to improve predictions.

Get suggestions on how to improve a model by using the discussion board. Please be aware that only feature requests or bug reports should be posted on the issues page.

Developer Guidelines

We welcome pull requests for any issue or extension of the models. Please follow the developers guide.

License

Free software: MIT license

Why DeepForest?

Remote sensing can transform the speed, scale, and cost of biodiversity and forestry surveys. Data acquisition currently outpaces the ability to identify individual organisms in high-resolution imagery. Individual crown delineation has been a long-standing challenge in remote sensing, and available algorithms produce mixed results. DeepForest is the first open-source implementation of a deep learning model for crown detection. Deep learning has made enormous strides in a range of computer vision tasks but requires significant amounts of training data. By including a trained model, we hope to simplify the process of retraining deep learning models for a range of forests, sensors, and spatial resolutions.

Citation

Weinstein, B.G.; Marconi, S.; Bohlman, S.; Zare, A.; White, E. Individual Tree-Crown Detection in RGB Imagery Using Semi-Supervised Deep Learning Neural Networks.
Remote Sens. 2019, 11, 1309


Owner metadata


GitHub Events

Total
Last Year

Committers metadata

Last synced: 6 days ago

Total Commits: 850
Total Committers: 30
Avg Commits per committer: 28.333
Development Distribution Score (DDS): 0.533

Commits in past year: 219
Committers in past year: 19
Avg Commits per committer in past year: 11.526
Development Distribution Score (DDS) in past year: 0.63

Name Email Commits
Ben Weinstein b****n@B****l 397
Benjamin Weinstein b****z 204
henrykironde h****e@g****m 81
Ethan White e****n@w****g 75
Om Doiphode o****1@g****m 22
Mu-Magdy m****5@g****m 15
Dingyi Fang d****9@c****u 11
Abhishek-Dimri a****5@g****m 7
Samia Haque Tisha s****5@g****m 6
Nakshatra 1****2 5
Cas Perl e****n@g****m 2
Abhishek-kumar0503 a****2@g****m 2
Satyam Sinha s****4@g****m 2
Dwaipayan Munshi 5****5 2
Rhydham 1****h 2
Karwot 3****t 2
Keerthi Reddy r****i@g****m 2
Pedro Cuenca p****o@h****o 1
RohitP2005 1****5 1
Rushiraj Gadhvi g****j@g****m 1
cbudac-fwig 8****g 1
davidnyberg d****5@g****m 1
elliot e****l@g****m 1
slurpinpuffs s****x@g****m 1
Nikolai Poliarnyi P****9@g****m 1
Bhavya Mehta 1****4 1
Dhiraj BM m****3@g****m 1
Gourav Dey g****6@h****n 1
Hesam Ossanloo (Personal) h****m@o****m 1
JSpencerPittman 1****n 1

Committer domains:


Issue and Pull Request metadata

Last synced: 2 days ago

Total issues: 547
Total pull requests: 479
Average time to close issues: 2 months
Average time to close pull requests: 14 days
Total issue authors: 129
Total pull request authors: 46
Average comments per issue: 2.7
Average comments per pull request: 1.52
Merged pull request: 335
Bot issues: 0
Bot pull requests: 7

Past year issues: 151
Past year pull requests: 233
Past year average time to close issues: about 1 month
Past year average time to close pull requests: 9 days
Past year issue authors: 22
Past year pull request authors: 22
Past year average comments per issue: 2.14
Past year average comments per pull request: 1.64
Past year merged pull request: 168
Past year bot issues: 0
Past year bot pull requests: 0

More stats: https://issues.ecosyste.ms/repositories/lookup?url=https://github.com/weecology/DeepForest

Top Issue Authors

  • bw4sz (251)
  • ethanwhite (55)
  • Smart133594 (14)
  • Mu-Magdy (11)
  • henrykironde (10)
  • easz (7)
  • EdwardHiscoke (6)
  • aguirrejuan (6)
  • naxatra2 (6)
  • gislain22 (5)
  • NickHarnau (5)
  • landkwon94 (4)
  • PravinM83 (4)
  • TSAI-ChengEn (4)
  • camappel (4)

Top Pull Request Authors

  • bw4sz (143)
  • henrykironde (95)
  • ethanwhite (69)
  • Mu-Magdy (25)
  • Om-Doiphode (21)
  • naxatra2 (11)
  • Abhishek-Dimri (10)
  • reddykkeerthi (8)
  • Samia35-2973 (8)
  • malayjoshi13 (7)
  • dependabot[bot] (7)
  • rhydham-nith (6)
  • dassaniansh (6)
  • ayeankit (6)
  • satsin06 (5)

Top Issue Labels

  • good first issue (64)
  • API (27)
  • Docs (24)
  • enhancement (17)
  • question (17)
  • bug (15)
  • Machine Learning (14)
  • Performance (14)
  • Feature Request (13)
  • installation (12)
  • Ideas for Machine Learning! (11)
  • dependencies (10)
  • stale (7)
  • wontfix (6)
  • help wanted (5)
  • tensorflow (4)
  • Google Summer of Code (2)
  • demo (2)
  • duplicate (1)
  • image (1)
  • To be documented (1)

Top Pull Request Labels

  • dependencies (8)
  • API (5)
  • Awaiting author contribution (4)
  • invalid (2)
  • test&review (1)
  • bug (1)

Package metadata

pypi.org: deepforest

Tree crown prediction using deep learning retinanets

  • Homepage:
  • Documentation: http://deepforest.readthedocs.io/en/latest/
  • Licenses: MIT
  • Latest release: 1.5.2 (published 3 months ago)
  • Last Synced: 2025-04-26T13:03:11.525Z (about 18 hours ago)
  • Versions: 50
  • Dependent Packages: 0
  • Dependent Repositories: 12
  • Downloads: 10,971 Last month
  • Rankings:
    • Stargazers count: 3.291%
    • Forks count: 4.048%
    • Downloads: 4.115%
    • Dependent repos count: 4.24%
    • Average: 4.601%
    • Dependent packages count: 7.31%
  • Maintainers (3)
conda-forge.org: deepforest

DeepForest is a python package for training and predicting individual tree crowns from airborne RGB imagery. DeepForest comes with a prebuilt model trained on data from the National Ecological Observation Network. Users can extend this model by annotating and training custom models starting from the prebuilt model. DeepForest es un paquete de python para la predicción de coronas de árboles individuales basada en modelos entrenados con imágenes remotas RVA ( RGB, por sus siglas en inglés). DeepForest viene con un modelo entrenado con datos proveídos por la Red Nacional de Observatorios Ecológicos (NEON, por sus siglas en inglés). Los usuarios pueden ampliar este modelo pre-construido por anotación de etiquetas y entrenamiento con datos locales. La documentación de DeepForest está escrita en inglés, sin embargo, agradeceríamos contribuciones con fin de hacerla accesible en otros idiomas.

  • Homepage: https://github.com/weecology/DeepForest
  • Licenses: MIT
  • Latest release: 1.2.1 (published about 3 years ago)
  • Last Synced: 2025-04-26T13:03:16.424Z (about 18 hours ago)
  • Versions: 10
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Rankings:
    • Forks count: 15.019%
    • Stargazers count: 20.15%
    • Average: 30.092%
    • Dependent repos count: 34.025%
    • Dependent packages count: 51.175%

Dependencies

.github/workflows/Conda-app.yml actions
  • actions/checkout v3 composite
  • mamba-org/provision-with-micromamba main composite
dev_requirements.txt pypi
  • albumentations * development
  • bumpversion * development
  • comet_ml * development
  • docutils <0.18 development
  • geopandas * development
  • h5py * development
  • imagecodecs * development
  • matplotlib * development
  • numpy * development
  • numpydoc * development
  • opencv-python * development
  • pandas * development
  • pillow * development
  • pip * development
  • psutil * development
  • pytest * development
  • pytest-profiling * development
  • pytorch_lightning * development
  • pyyaml >=5.1.0 development
  • rasterio * development
  • recommonmark * development
  • rtree * development
  • slidingwindow * development
  • sphinx * development
  • sphinx_markdown_tables * development
  • sphinx_rtd_theme * development
  • torch * development
  • torchvision >=0.13 development
  • tqdm * development
  • twine * development
  • xmltodict * development
docs/requirements.txt pypi
  • sphinx_markdown_tables *
environment.yml pypi
  • albumentations >=1.0.0
  • imagecodecs *
  • sphinx-markdown-tables *
setup.py pypi
  • Pillow >6.2.0
  • albumentations >=1.0.0
  • geopandas *
  • imagecodecs *
  • matplotlib *
  • numpy *
  • opencv-python >=4.5.4
  • pandas *
  • progressbar2 *
  • pytorch_lightning *
  • rasterio *
  • rtree *
  • scipy >1.5
  • six *
  • slidingwindow *
  • torch *
  • torchvision >=0.13
  • tqdm *
  • xmltodict *

Score: 19.240815666578378