A curated list of open technology projects to sustain a stable climate, energy supply, biodiversity and natural resources.

Methane-detection-from-hyperspectral-imagery

Deep Learning based Remote Sensing Methods for Methane Detection in Airborne Hyperspectral Imagery.
https://github.com/satish1901/Methane-detection-from-hyperspectral-imagery

Category: Emissions
Sub Category: Emission Observation and Modeling

Last synced: about 21 hours ago
JSON representation

Repository metadata

Deep Learning based Remote Sensing Methods for Methane Detection in Airborne Hyperspectral Imagery

README.md

Methane-detection-from-hyperspectral-imagery

H-MRCNN introduces fast algorithms to analyze large-area hyper-spectral information and methods to autonomously represent and detect CH4 plumes. This repo contains 2 methods for processing different type of data, Single detector works on 4-channels data and Ensemble detectors works on 432-channels raw hyperspectral data recorded from AVIRIS-NG instrument.

Deep Remote Sensing Methods for Methane Detection in Overhead Hyperspectral Imagery

Satish Kumar*, Carlos Torres*, Oytun Ulutan, Alana Ayasse, Dar Roberts, B S Manjunath.

Official repository of our WACV 2020 paper.

This repository includes:

  • Source code of single-detector and ensemble detectors(H-MRCNN) built on Mask-RCNN.
  • Training code for single-detector and ensemble detectors(H-MRCNN)
  • Pre-trained ms-coco weights of Mask-RCNN
  • Annotation generator to read-convert mask annotation into json.
  • Modified spectral library of python
  • Example of training on your own dataset

supported versions
Library
GitHub license

The whole repo folder structure follows the same style as written in the paper for easy reproducibility and easy to extend. If you use it in your research, please consider citing our paper (bibtex below)

Citing

If this work is useful to you, please consider citing our paper:

@inproceedings{kumar2020deep,
  title={Deep Remote Sensing Methods for Methane Detection in Overhead Hyperspectral Imagery},
  author={Kumar, Satish and Torres, Carlos and Ulutan, Oytun and Ayasse, Alana and Roberts, Dar and Manjunath, BS},
  booktitle={2020 IEEE Winter Conference on Applications of Computer Vision (WACV)},
  pages={1765--1774},
  year={2020},
  organization={IEEE}
}

Requirements

  • Linux or macOS with Python ≥ 3.6
  • Tensorflow <= 1.8
  • CUDA 9.0
  • cudNN (compatible to CUDA)

Installation

  1. Clone this repository
  2. Install dependencies
pip install -r requirements.txt

Single-detector

Running single-detector is quite simple. Follow the README.md in single_detector folder

single_detector/README.md

Ensemble-detector

For Running ensemble-detector we need some pre-processing. Follow the README.md in emsemble_detector folder

ensemble_detector/README.md

Owner metadata


GitHub Events

Total
Last Year

Committers metadata

Last synced: 7 days ago

Total Commits: 104
Total Committers: 1
Avg Commits per committer: 104.0
Development Distribution Score (DDS): 0.0

Commits in past year: 0
Committers in past year: 0
Avg Commits per committer in past year: 0.0
Development Distribution Score (DDS) in past year: 0.0

Name Email Commits
Satish Kumar y****1@g****m 104

Committer domains:


Issue and Pull Request metadata

Last synced: 2 days ago

Total issues: 4
Total pull requests: 24
Average time to close issues: about 1 hour
Average time to close pull requests: 3 months
Total issue authors: 4
Total pull request authors: 1
Average comments per issue: 1.5
Average comments per pull request: 0.54
Merged pull request: 0
Bot issues: 0
Bot pull requests: 24

Past year issues: 1
Past year pull requests: 0
Past year average time to close issues: N/A
Past year average time to close pull requests: N/A
Past year issue authors: 1
Past year pull request authors: 0
Past year average comments per issue: 2.0
Past year average comments per pull request: 0
Past year merged pull request: 0
Past year bot issues: 0
Past year bot pull requests: 0

More stats: https://issues.ecosyste.ms/repositories/lookup?url=https://github.com/satish1901/Methane-detection-from-hyperspectral-imagery

Top Issue Authors

  • tsy244306708 (1)
  • marcoruizrueda (1)
  • yaoyuan10475 (1)
  • thomaspark1167 (1)

Top Pull Request Authors

  • dependabot[bot] (24)

Top Issue Labels

Top Pull Request Labels

  • dependencies (24)

Dependencies

ensemble_detectors/src/Algorithm_1_matchfilter/spectral_lib/setup.py pypi
  • numpy *
ensemble_detectors/src/Algorithm_1_matchfilter/spectral_lib/spectral.egg-info/requires.txt pypi
  • numpy *
ensemble_detectors/src/Algorithm_3_mrcnn/mask_rcnn/requirements.txt pypi
  • IPython *
  • Pillow *
  • cython *
  • h5py *
  • imgaug *
  • keras >=2.0.8
  • matplotlib *
  • numpy *
  • scikit-image *
  • scipy *
  • tensorflow >=1.3.0
requirements.txt pypi
  • Keras ==2.2.4
  • Keras-Applications ==1.0.8
  • Keras-Preprocessing ==1.1.0
  • Markdown ==3.1.1
  • Pillow *
  • PyWavelets ==1.0.3
  • PyYAML ==5.1.1
  • Pygments ==2.4.2
  • Werkzeug ==0.15.4
  • absl-py ==0.7.1
  • astor ==0.8.0
  • backcall ==0.1.0
  • bleach ==1.5.0
  • coloredlogs ==10.0
  • cycler ==0.10.0
  • decorator ==4.4.0
  • gast ==0.2.2
  • grpcio ==1.22.0
  • h5py ==2.9.0
  • html5lib ==0.9999999
  • humanfriendly ==4.18
  • imageio ==2.5.0
  • imutils ==0.5.2
  • ipython ==7.6.1
  • ipython-genutils ==0.2.0
  • jedi ==0.14.0
  • joblib ==0.13.2
  • kiwisolver ==1.1.0
  • mask-rcnn ==2.1
  • matplotlib ==3.1.1
  • networkx ==2.3
  • numpy ==1.16.4
  • opencv-python ==3.4.3.18
  • parso ==0.5.0
  • pexpect ==4.7.0
  • pickleshare ==0.7.5
  • prompt-toolkit ==2.0.9
  • protobuf ==3.9.0
  • ptyprocess ==0.6.0
  • pyparsing ==2.4.0
  • python-dateutil ==2.8.0
  • scikit-image ==0.15.0
  • scikit-learn ==0.21.3
  • scipy ==1.3.0
  • six ==1.12.0
  • spectral ==0.19
  • tensorboard ==1.7.0
  • tensorflow-gpu ==1.7.0
  • termcolor ==1.1.0
  • traitlets ==4.3.2
  • wcwidth ==0.1.7
single_detector/src/custom-mask-rcnn-detector/mask_rcnn/requirements.txt pypi
  • IPython *
  • Pillow *
  • cython *
  • h5py *
  • imgaug *
  • keras >=2.0.8
  • matplotlib *
  • numpy *
  • scikit-image *
  • scipy *
  • tensorflow >=1.3.0
ensemble_detectors/src/Algorithm_3_mrcnn/mask_rcnn/setup.py pypi
single_detector/src/custom-mask-rcnn-detector/mask_rcnn/setup.py pypi

Score: 4.30406509320417