Cell2Fire
A cell-based forest and wildland landscape fire spread simulator.
https://github.com/cell2fire/cell2fire
Category: Biosphere
Sub Category: Wildfire
Last synced: about 18 hours ago
JSON representation
Repository metadata
For Research Use Only: A Cell Based Forest Fire Growth Model
- Host: GitHub
- URL: https://github.com/cell2fire/cell2fire
- Owner: cell2fire
- License: gpl-3.0
- Created: 2019-04-23T17:37:59.000Z (about 6 years ago)
- Default Branch: main
- Last Pushed: 2023-11-26T22:12:20.000Z (over 1 year ago)
- Last Synced: 2025-04-17T23:50:59.067Z (10 days ago)
- Language: Python
- Size: 42.5 MB
- Stars: 48
- Watchers: 5
- Forks: 24
- Open Issues: 12
- Releases: 2
-
Metadata Files:
- Readme: README.md
- License: LICENSE
README.md
Cell2Fire: A Cell Based Forest Fire Growth Model C++/Python
Cristobal Pais, Jaime Carrasco, David Martell, David L. Woodruff, Andres Weintraub
Disclaimer
This software is for research use only. There is no warranty of any kind;
there is not even the implied warranty of fitness for use.
Introduction
Cell2Fire is a new cell-based forest and wildland landscape fire spread simulator.
The fire environment is characterized by partitioning the landscape into a large number of homogeneous cells and specifying the fuel, weather, fuel moisture and topography attributes of each cell.
Fire spread within each cell is assumed to be elliptical and governed by spread rates predicted by any independent fire spread model (e.g. the Canadian Forest Fire Behavior Prediction System).
Cell2Fire exploits parallel computation methods which allows users to run large-scale simulations in short periods of time.
It includes powerful statistical, graphical output, and spatial analysis features to facilitate the display and analysis of projected fire growth.
Work in progress documentation is available at
readthedocs and there is an
original draft of a paper on
arXiv.
Citation
@ARTICLE{Cell2Fire,
AUTHOR={Pais, Cristobal and Carrasco, Jaime and Martell, David L. and Weintraub, Andres and Woodruff, David L.},
TITLE={Cell2Fire: A Cell-Based Forest Fire Growth Model to Support Strategic Landscape Management Planning},
JOURNAL={Frontiers in Forests and Global Change},
VOLUME={4},
YEAR={2021},
URL={https://www.frontiersin.org/articles/10.3389/ffgc.2021.692706},
DOI={10.3389/ffgc.2021.692706},
ISSN={2624-893X}
}
Requirements
- g++
- Boost (C++)
- Eigen (C++)
- Python 3.6
- numpy
- pandas
- matplotlib
- seaborn
- tqdm
- opencv
- imread
- networkx (for stats module)
Installation
Installation may require some familiarity with C++, make, and Python.
- cd Cell2Fire/cell2fire/Cell2FireC
- (edit Makefile to have the correct path to Eigen)
- make
- cd ../..
- pip install -r requirements.txt # might not do anything
- python setup.py develop
Usage
In order to run the simulator (after installation and cd to Cell2Fire/cell2fire), the following command can be used:
$ python main.py --input-instance-folder ../data/Sub40x40/ --output-folder ../results/Sub40x40 --ignitions --sim-years 1 --nsims 5 --finalGrid --weather rows --nweathers 1 --Fire-Period-Length 1.0 --output-messages --ROS-CV 0.0 --seed 123 --stats --allPlots --IgnitionRad 5 --grids --combine
For the full list of arguments and their explanation use:
$ python main.py -h
In addition, both the C++ core and Python scripts can be used separately:
C ++
Only simulation and generate evolution grids (no stats or plots).
Parallel-ready version will be uploaded soon.
$ ./Cell2Fire --input-instance-folder ../data/Sub40x40/ --output-folder ../results/Sub40x40 --ignitions --sim-years 1 --nsims 1 --grids --final-grid --Fire-Period-Length 1.0 --weather rows --nweathers 1 --output-messages --ROS-CV 0.0 --seed 123 --IgnitionRad 0 --HFactor 1.0 --FFactor 1.0 --BFactor 1.0 --EFactor 1.0
Python
Only processing option (reads a previously simulated instance and computes stats/plots).
Important: provide the number of sims --nsims to be processed
$ python main.py --input-instance-folder ../data/Sub40x40/ --output-folder ../results/Sub40x40_Previous_simulation --nsims 10 --stats --allPlots --onlyProcessing
Output examples
Dogrib forest (Canadian instance)
Visualize shortest paths propagation (10 scens)
Shortest paths propagation and ROS intensity (10 scens)
Burn-Probability maps (10 scens)
GitHub Events
Total
- Issues event: 1
- Watch event: 3
- Issue comment event: 2
- Pull request event: 1
- Fork event: 3
Last Year
- Issues event: 1
- Watch event: 3
- Issue comment event: 2
- Pull request event: 1
- Fork event: 3
Committers metadata
Last synced: 8 days ago
Total Commits: 246
Total Committers: 13
Avg Commits per committer: 18.923
Development Distribution Score (DDS): 0.606
Commits in past year: 16
Committers in past year: 1
Avg Commits per committer in past year: 16.0
Development Distribution Score (DDS) in past year: 0.0
Name | Commits | |
---|---|---|
David L. Woodruff | d****f@u****u | 97 |
David L. Woodruff | D****f@U****u | 30 |
ulises | u****z@u****u | 28 |
Kotaro Yama | k****a@g****m | 26 |
Cpaismz | c****z@g****m | 19 |
cpaismz89 | 3****9 | 11 |
Jiamu Liu | j****u@u****u | 9 |
Kumar Vaibhav | v****t@g****m | 6 |
Kumar Vaibhav | 6****1 | 6 |
TC-Zheng | 6****g | 5 |
Jaime Luna | j****a@u****u | 4 |
ZhuohengHan | 5****n | 3 |
yzh9810 | 5****0 | 2 |
Committer domains:
- ucdavis.edu: 5
Issue and Pull Request metadata
Last synced: 2 days ago
Total issues: 21
Total pull requests: 179
Average time to close issues: 8 months
Average time to close pull requests: 8 days
Total issue authors: 6
Total pull request authors: 9
Average comments per issue: 0.57
Average comments per pull request: 0.59
Merged pull request: 130
Bot issues: 0
Bot pull requests: 0
Past year issues: 2
Past year pull requests: 1
Past year average time to close issues: N/A
Past year average time to close pull requests: N/A
Past year issue authors: 1
Past year pull request authors: 1
Past year average comments per issue: 1.0
Past year average comments per pull request: 0.0
Past year merged pull request: 0
Past year bot issues: 0
Past year bot pull requests: 0
Top Issue Authors
- DLWoodruff (6)
- BadgerOnABike (6)
- kotaroyama (4)
- FSet89 (2)
- ufuk-cakir (2)
- spydmobile (1)
Top Pull Request Authors
- DLWoodruff (47)
- kotaroyama (36)
- kvaibhav91 (36)
- TC-Zheng (20)
- ZhuohengHan (20)
- Jiamu1 (8)
- yzh9810 (6)
- jaim3luna (4)
- cpaismz89 (2)
Top Issue Labels
Top Pull Request Labels
Dependencies
- imread *
- matplotlib *
- numpy *
- opencv *
- pandas *
- pprint *
- seaborn *
- tqdm *
- deap *
- imread *
- matplotlib *
- numpy *
- opencv-python *
- pandas *
- seaborn *
- tqdm *
- deap *
- imread *
- matplotlib *
- networkx *
- numpy *
- pandas *
- seaborn *
- tqdm *
- actions/checkout v2 composite
- codecov/codecov-action v1 composite
- actions/checkout v2 composite
- codecov/codecov-action v1 composite
- actions/checkout v2 composite
- codecov/codecov-action v1 composite
- actions/checkout v2 composite
- codecov/codecov-action v1 composite
- actions/checkout v2 composite
- codecov/codecov-action v1 composite
- actions/checkout v2 composite
- codecov/codecov-action v1 composite
- actions/checkout v2 composite
- codecov/codecov-action v1 composite
- actions/checkout v2 composite
- codecov/codecov-action v1 composite
- actions/checkout v2 composite
- codecov/codecov-action v1 composite
- actions/checkout v2 composite
- codecov/codecov-action v1 composite
- actions/checkout v2 composite
- codecov/codecov-action v1 composite
- continuumio/anaconda3 latest build
Score: 6.659293919683638