MegaDetector
Deep learning tools that accelerate the review of motion-triggered wildlife camera images.
https://github.com/microsoft/CameraTraps
Category: Biosphere
Sub Category: Terrestrial Wildlife
Keywords
camera-traps computer-vision conservation machine-learning megadetector pytorch pytorch-wildlife wildlife
Keywords from Contributors
ecology cameratraps aiforearth transforms measur observation distributed web-mapping convolutional-neural-networks deep-neural-networks
Last synced: about 20 hours ago
JSON representation
Repository metadata
PyTorch Wildlife: a Collaborative Deep Learning Framework for Conservation.
- Host: GitHub
- URL: https://github.com/microsoft/CameraTraps
- Owner: microsoft
- License: mit
- Created: 2018-10-11T18:02:42.000Z (about 7 years ago)
- Default Branch: main
- Last Pushed: 2025-10-15T22:05:50.000Z (19 days ago)
- Last Synced: 2025-10-23T09:39:59.678Z (11 days ago)
- Topics: camera-traps, computer-vision, conservation, machine-learning, megadetector, pytorch, pytorch-wildlife, wildlife
- Language: Python
- Homepage: https://microsoft.github.io/CameraTraps/
- Size: 486 MB
- Stars: 940
- Watchers: 52
- Forks: 281
- Open Issues: 24
- Releases: 9
-
Metadata Files:
- Readme: README.md
- License: LICENSE.md
- Security: SECURITY.md
README.md

📣 Announcements
🚀 We’re Open for Contributions!
We’re excited to announce that Pytorch-Wildlife is now open to community contributions!
If you’d like to get involved and help improve the project, we’d love to have you on board.
👉 Check out our Contribution Guidelines:
You’ll find everything you need there — from how to pick an issue, to submitting your first pull request.
Let’s build this together! 🐾🌱
V 1.2.4
The inference code for the MIT YOLO and Apache RT‑DETR models is now available! To use either one, just load it like any other PyTorch‑Wildlife model:
from pw_detection import MegaDetectorV6MIT, MegaDetectorV6Apache
# MIT YOLO
detector = MegaDetectorV6MIT(
device=DEVICE,
pretrained=True,
version="MDV6-mit-yolov9-e"
)
# Apache RT‑DETR
detector = MegaDetectorV6Apache(
device=DEVICE,
pretrained=True,
version="MDV6-apa-rtdetr-e"
)
Valid versions:
- MDV6-mit-yolov9-c
- MDV6-mit-yolov9-e
- MDV6-apa-rtdetr-c
- MDV6-apa-rtdetr-e
You can also try out the full pipeline using the detection_classification_pipeline_demo.py script in the demo folder.
Previous versions:
👋 Welcome to Pytorch-Wildlife
PyTorch-Wildlife is an AI platform designed for the AI for Conservation community to create, modify, and share powerful AI conservation models. It allows users to directly load a variety of models including MegaDetector, DeepFaune, and HerdNet from our ever expanding model zoo for both animal detection and classification. In the future, we will also include models that can be used for applications, including underwater images and bioacoustics. We want to provide a unified and straightforward experience for both practicioners and developers in the AI for conservation field. Your engagement with our work is greatly appreciated, and we eagerly await any feedback you may have.
Explore the codebase, functionalities and user interfaces of Pytorch-Wildlife through our documentation, interactive HuggingFace web app or local demos and notebooks.
🚀 Quick Start
👇 Here is a quick example on how to perform detection and classification on a single image using PyTorch-wildlife
import numpy as np
from PytorchWildlife.models import detection as pw_detection
from PytorchWildlife.models import classification as pw_classification
img = np.random.randn(3, 1280, 1280)
# Detection
detection_model = pw_detection.MegaDetectorV6() # Model weights are automatically downloaded.
detection_result = detection_model.single_image_detection(img)
#Classification
classification_model = pw_classification.AI4GAmazonRainforest() # Model weights are automatically downloaded.
classification_results = classification_model.single_image_classification(img)
More models can be found in our model zoo
⚙️ Install Pytorch-Wildlife
pip install PytorchWildlife
Please refer to our installation guide for more installation information.
📃 Documentation
Please also go to our newly made dofumentation page for more information:
🖼️ Examples
Image detection using MegaDetector
Credits to Universidad de los Andes, Colombia.
Image classification with MegaDetector and AI4GAmazonRainforest
Credits to Universidad de los Andes, Colombia.
Opossum ID with MegaDetector and AI4GOpossum
Credits to the Agency for Regulation and Control of Biosecurity and Quarantine for Galápagos (ABG), Ecuador.
🖋️ Cite us!
We have recently published a summary paper on Pytorch-Wildlife. The paper has been accepted as an oral presentation at the CV4Animals workshop at this CVPR 2024. Please feel free to cite us!
@misc{hernandez2024pytorchwildlife,
title={Pytorch-Wildlife: A Collaborative Deep Learning Framework for Conservation},
author={Andres Hernandez and Zhongqi Miao and Luisa Vargas and Sara Beery and Rahul Dodhia and Juan Lavista},
year={2024},
eprint={2405.12930},
archivePrefix={arXiv},
}
Also, don't forget to cite our original paper for MegaDetector:
@misc{beery2019efficient,
title={Efficient Pipeline for Camera Trap Image Review},
author={Sara Beery and Dan Morris and Siyu Yang},
year={2019}
eprint={1907.06772},
archivePrefix={arXiv},
}
🤝 Existing Collaborators and Contributors
The extensive collaborative efforts of Megadetector have genuinely inspired us, and we deeply value its significant contributions to the community. As we continue to advance with Pytorch-Wildlife, our commitment to delivering technical support to our existing partners on MegaDetector remains the same.
Here we list a few of the organizations that have used MegaDetector. We're only listing organizations who have given us permission to refer to them here or have posted publicly about their use of MegaDetector.
We are also building a list of contributors and will release in future updates! Thank you for your efforts!
[!IMPORTANT]
If you would like to be added to this list or have any questions regarding MegaDetector and Pytorch-Wildlife, please email us or join us in our Discord channel:
Citation (https://github.com/microsoft/CameraTraps/blob/main/)
cff-version: 1.2.0
title: Efficient Pipeline for Camera Trap Image Review
message: >-
If you use this software, please cite it using the
metadata from this file.
type: software
authors:
- given-names: Sara
family-names: Beery
- given-names: Dan
family-names: Morris
email: cameratraps@lila.science
- given-names: Siyu
family-names: Yang
identifiers:
- type: url
value: 'https://arxiv.org/abs/1907.06772'
description: 'arXiv preprint, 1907.06772, 2019'
repository-code: 'http://github.com/ecologize/CameraTraps'
keywords:
- Camera traps
- Conservation
- Computer vision
license: MIT
Owner metadata
- Name: Microsoft
- Login: microsoft
- Email: opensource@microsoft.com
- Kind: organization
- Description: Open source projects and samples from Microsoft
- Website: https://opensource.microsoft.com
- Location: Redmond, WA
- Twitter: OpenAtMicrosoft
- Company:
- Icon url: https://avatars.githubusercontent.com/u/6154722?v=4
- Repositories: 7465
- Last ynced at: 2025-10-27T00:51:58.461Z
- Profile URL: https://github.com/microsoft
GitHub Events
Total
- Create event: 16
- Release event: 3
- Issues event: 51
- Watch event: 147
- Delete event: 14
- Member event: 3
- Issue comment event: 60
- Push event: 145
- Pull request review comment event: 4
- Pull request review event: 16
- Pull request event: 64
- Fork event: 38
Last Year
- Create event: 16
- Issues event: 50
- Release event: 3
- Watch event: 142
- Delete event: 14
- Member event: 3
- Issue comment event: 60
- Push event: 135
- Pull request review comment event: 4
- Pull request review event: 16
- Pull request event: 64
- Fork event: 37
Committers metadata
Last synced: 6 days ago
Total Commits: 3,101
Total Committers: 67
Avg Commits per committer: 46.284
Development Distribution Score (DDS): 0.559
Commits in past year: 128
Committers in past year: 12
Avg Commits per committer in past year: 10.667
Development Distribution Score (DDS) in past year: 0.484
| Name | Commits | |
|---|---|---|
| Dan Morris | d****s@c****u | 1368 |
| Marcel Simon | a****n@m****m | 340 |
| Siyu Yang | y****u@m****m | 282 |
| amritagupta | g****0@g****m | 268 |
| Christopher Yeh | c****6 | 169 |
| zhmiao | z****o@m****m | 162 |
| aa-hernandez | 6****z | 77 |
| annie.enchakattu | a****u@g****m | 63 |
| Vardhan Duvvuri | G****r@G****g | 62 |
| Isai Daniel | 8****8 | 38 |
| Daniela Ruiz | d****1@u****o | 37 |
| v-andreshern | v****n@m****m | 18 |
| Annie Enchakattu | 3****u | 15 |
| Vardhan Duvvuri | v****i@o****m | 12 |
| Vardhan duvvuri | v****i@g****g | 12 |
| Ubuntu | l****x@l****t | 12 |
| arashno | a****h@g****m | 10 |
| Patrick Flickinger | p****n@m****m | 10 |
| Ubuntu | f****s@n****t | 10 |
| Daniela | v****z@m****m | 10 |
| Sundar Sripada V. S. | s****6@g****m | 9 |
| Default User | u****r@u****t | 7 |
| Ubuntu | m****t@m****t | 6 |
| Ubuntu | c****e@c****t | 6 |
| Daniela Ruiz | d****1@d****1@u****o | 6 |
| Sara Beery | s****y@g****m | 6 |
| SuhailSaify | s****8@g****m | 6 |
| dependabot[bot] | 4****] | 6 |
| Siyu Yang | y****7@i****m | 5 |
| Darío Hereñú | m****a@g****m | 4 |
| and 37 more... | ||
Committer domains:
- microsoft.com: 9
- uniandes.edu.co: 2
- cs.stanford.edu: 1
- gramener.com: 1
- glp-098.gramener.org: 1
- gramener.org: 1
- lynxvm.vby1cnsztnbubpoopriasnvbxa.jx.internal.cloudapp.net: 1
- nactidownloadvm.5svuschbwnqu5b5t3fbzyv3y5b.xx.internal.cloudapp.net: 1
- ubuntu.localhost: 1
- meerkatvm.vby1cnsztnbubpoopriasnvbxa.jx.internal.cloudapp.net: 1
- coyotevm.vby1cnsztnbubpoopriasnvbxa.jx.internal.cloudapp.net: 1
- da.ruizl1: 1
- alfa1.vnhlf41xn1iunobjzwnj3sqaqc.bx.internal.cloudapp.net: 1
- meyerperin.com: 1
- condorvm.vby1cnsztnbubpoopriasnvbxa.jx.internal.cloudapp.net: 1
- mallardvm.vby1cnsztnbubpoopriasnvbxa.jx.internal.cloudapp.net: 1
- onemoremallard.5zrdgxxmlslenhl3jfsvnatlfg.jx.internal.cloudapp.net: 1
- megadetector-float.fywutlkdhe2etlddvntzl12x1a.ex.internal.cloudapp.net: 1
- dmultiplicitas.onmicrosoft.com: 1
- brunel.ac.uk: 1
- synthetaic.com: 1
- osu.edu: 1
- amnh.org: 1
- bhconsulting.ca: 1
- pa.h4nqyl4svykevn4x5gbo3tfbhh.cx.internal.cloudapp.net: 1
- megadetector-float2.fywutlkdhe2etlddvntzl12x1a.ex.internal.cloudapp.net: 1
- google.com: 1
Issue and Pull Request metadata
Last synced: 19 days ago
Total issues: 122
Total pull requests: 335
Average time to close issues: about 2 months
Average time to close pull requests: 13 days
Total issue authors: 80
Total pull request authors: 32
Average comments per issue: 2.43
Average comments per pull request: 0.29
Merged pull request: 223
Bot issues: 5
Bot pull requests: 77
Past year issues: 36
Past year pull requests: 63
Past year average time to close issues: 15 days
Past year average time to close pull requests: 9 days
Past year issue authors: 23
Past year pull request authors: 12
Past year average comments per issue: 0.61
Past year average comments per pull request: 0.17
Past year merged pull request: 50
Past year bot issues: 0
Past year bot pull requests: 0
Top Issue Authors
- aa-hernandez (9)
- aweaver1fandm (5)
- microsoft-github-policy-service[bot] (4)
- JaimyvS (4)
- VLucet (4)
- nathanielrindlaub (3)
- yodaka0 (3)
- VYRION-Ai (3)
- barlavi1 (3)
- ra9hur (2)
- MattB-SF (2)
- ehallein (2)
- davidwhealey (2)
- dvelasco3 (2)
- NetZissou (2)
Top Pull Request Authors
- zhmiao (133)
- dependabot[bot] (74)
- aa-hernandez (52)
- agentmorris (12)
- JoejynWan (7)
- yangsiyu007 (4)
- ss26 (4)
- luvargas2 (4)
- lucas-a-meyer (4)
- BenCretois (3)
- VLucet (3)
- chrisyeh96 (3)
- microsoft-github-policy-service[bot] (3)
- omahs (2)
- YoussefBayouli (2)
Top Issue Labels
- bug (26)
- enhancement (19)
- question (11)
- good first issue (4)
- help wanted (1)
- Waiting for more info (1)
- discussion (1)
- dependencies (1)
- python (1)
Top Pull Request Labels
- dependencies (74)
- python (68)
- .NET (2)
Package metadata
- Total packages: 1
-
Total downloads:
- pypi: 1,380 last-month
- Total dependent packages: 0
- Total dependent repositories: 0
- Total versions: 33
- Total maintainers: 2
pypi.org: pytorchwildlife
a PyTorch Collaborative Deep Learning Framework for Conservation.
- Homepage: https://github.com/microsoft/CameraTraps/
- Documentation: https://pytorchwildlife.readthedocs.io/
- Licenses: MIT
- Latest release: 1.2.4 (published 3 months ago)
- Last Synced: 2025-10-29T17:35:58.142Z (5 days ago)
- Versions: 33
- Dependent Packages: 0
- Dependent Repositories: 0
- Downloads: 1,380 Last month
-
Rankings:
- Dependent packages count: 9.379%
- Average: 38.75%
- Dependent repos count: 68.121%
- Maintainers (2)
Dependencies
- python 3.8-slim build
- absl-py ==2.1.0
- aiofiles ==23.2.1
- aiohttp ==3.9.3
- aiosignal ==1.3.1
- altair ==5.2.0
- annotated-types ==0.6.0
- anyio ==4.2.0
- asttokens ==2.4.1
- async-timeout ==4.0.3
- attrs ==23.2.0
- backcall ==0.2.0
- cachetools ==5.3.2
- certifi ==2023.11.17
- charset-normalizer ==3.3.2
- click ==8.1.7
- colorama ==0.4.6
- contourpy ==1.1.1
- cycler ==0.12.1
- decorator ==5.1.1
- exceptiongroup ==1.2.0
- executing ==2.0.1
- fastapi ==0.109.0
- ffmpy ==0.3.1
- filelock ==3.13.1
- fire ==0.5.0
- fonttools ==4.47.2
- frozenlist ==1.4.1
- fsspec ==2023.12.2
- google-auth ==2.27.0
- google-auth-oauthlib ==1.0.0
- gradio ==4.8.0
- gradio-client ==0.7.1
- grpcio ==1.60.0
- h11 ==0.14.0
- httpcore ==1.0.2
- httpx ==0.26.0
- huggingface-hub ==0.20.3
- idna ==3.6
- importlib-metadata ==7.0.1
- importlib-resources ==6.1.1
- ipython ==8.12.3
- jedi ==0.19.1
- jinja2 ==3.1.3
- joblib ==1.3.2
- jsonschema ==4.21.1
- jsonschema-specifications ==2023.12.1
- kiwisolver ==1.4.5
- lightning-utilities ==0.10.1
- markdown ==3.5.2
- markdown-it-py ==3.0.0
- markupsafe ==2.1.4
- matplotlib ==3.7.4
- matplotlib-inline ==0.1.6
- mdurl ==0.1.2
- multidict ==6.0.4
- munch ==2.5.0
- numpy ==1.24.4
- oauthlib ==3.2.2
- opencv-python ==4.9.0.80
- opencv-python-headless ==4.9.0.80
- orjson ==3.9.12
- packaging ==23.2
- pandas ==2.0.3
- parso ==0.8.3
- pexpect ==4.9.0
- pickleshare ==0.7.5
- pillow ==10.1.0
- pkgutil-resolve-name ==1.3.10
- prompt-toolkit ==3.0.43
- protobuf ==3.20.1
- psutil ==5.9.8
- ptyprocess ==0.7.0
- pure-eval ==0.2.2
- pyasn1 ==0.5.1
- pyasn1-modules ==0.3.0
- pydantic ==2.6.0
- pydantic-core ==2.16.1
- pydub ==0.25.1
- pygments ==2.17.2
- pyparsing ==3.1.1
- python-dateutil ==2.8.2
- python-multipart ==0.0.6
- pytorch-lightning ==1.9.0
- pytorchwildlife *
- pytz ==2023.4
- pyyaml ==6.0.1
- referencing ==0.33.0
- requests ==2.31.0
- requests-oauthlib ==1.3.1
- rich ==13.7.0
- rpds-py ==0.17.1
- rsa ==4.9
- scikit-learn ==1.2.0
- scipy ==1.10.1
- seaborn ==0.13.2
- semantic-version ==2.10.0
- shellingham ==1.5.4
- six ==1.16.0
- sniffio ==1.3.0
- stack-data ==0.6.3
- starlette ==0.35.1
- supervision ==0.16.0
- tensorboard ==2.14.0
- tensorboard-data-server ==0.7.2
- termcolor ==2.4.0
- thop ==0.1.1
- threadpoolctl ==3.2.0
- tomlkit ==0.12.0
- toolz ==0.12.1
- torch ==1.10.1
- torchaudio ==0.10.1
- torchmetrics ==1.3.0.post0
- torchvision ==0.11.2
- tqdm ==4.66.1
- traitlets ==5.14.1
- typer ==0.9.0
- typing-extensions ==4.9.0
- tzdata ==2023.4
- ultralytics-yolov5 ==0.1.1
- urllib3 ==2.2.0
- uvicorn ==0.27.0.post1
- wcwidth ==0.2.13
- websockets ==11.0.3
- werkzeug ==3.0.1
- yarl ==1.9.4
- zipp ==3.17.0
- PytorchWildlife *
- munch *
- ultralytics *
- wget *
- _libgcc_mutex 0.1
- _openmp_mutex 4.5
- bzip2 1.0.8
- ca-certificates 2023.11.17
- ld_impl_linux-64 2.40
- libffi 3.4.2
- libgcc-ng 13.2.0
- libgomp 13.2.0
- libnsl 2.0.1
- libsqlite 3.44.2
- libuuid 2.38.1
- libxcrypt 4.4.36
- libzlib 1.2.13
- ncurses 6.4
- openssl 3.2.0
- pip 23.3.2
- python 3.8.18
- readline 8.2
- setuptools 69.0.3
- tk 8.6.13
- wheel 0.42.0
- xz 5.2.6
- absl-py ==2.1.0
- aiofiles ==23.2.1
- annotated-types ==0.7.0
- antlr4-python3-runtime ==4.9.3
- anyio ==4.6.0
- appdirs ==1.4.4
- asttokens ==2.4.1
- attrs ==24.2.0
- certifi ==2024.8.30
- cffi ==1.17.1
- chardet ==5.2.0
- charset-normalizer ==3.3.2
- click ==8.1.7
- contourpy ==1.3.0
- crowsetta ==5.1.0
- cycler ==0.12.1
- decorator ==5.1.1
- defusedxml ==0.7.1
- exceptiongroup ==1.2.2
- executing ==2.1.0
- fastapi ==0.115.0
- ffmpy ==0.4.0
- filelock ==3.16.1
- fire ==0.6.0
- fonttools ==4.54.0
- fsspec ==2024.9.0
- gradio ==4.44.0
- gradio-client ==1.3.0
- grpcio ==1.66.1
- h11 ==0.14.0
- httpcore ==1.0.5
- httpx ==0.27.2
- huggingface-hub ==0.25.1
- idna ==3.10
- importlib-resources ==6.4.5
- ipython ==8.27.0
- jedi ==0.19.1
- jinja2 ==3.1.4
- joblib ==1.4.2
- kiwisolver ==1.4.7
- markdown ==3.7
- markdown-it-py ==3.0.0
- markupsafe ==2.1.5
- matplotlib ==3.9.2
- matplotlib-inline ==0.1.7
- mdurl ==0.1.2
- mpmath ==1.3.0
- multimethod ==1.12
- munch ==4.0.0
- mypy-extensions ==1.0.0
- networkx ==3.3
- numpy ==1.26.4
- nvidia-cublas-cu12 ==12.1.3.1
- nvidia-cuda-cupti-cu12 ==12.1.105
- nvidia-cuda-nvrtc-cu12 ==12.1.105
- nvidia-cuda-runtime-cu12 ==12.1.105
- nvidia-cudnn-cu12 ==9.1.0.70
- nvidia-cufft-cu12 ==11.0.2.54
- nvidia-curand-cu12 ==10.3.2.106
- nvidia-cusolver-cu12 ==11.4.5.107
- nvidia-cusparse-cu12 ==12.1.0.106
- nvidia-nccl-cu12 ==2.20.5
- nvidia-nvjitlink-cu12 ==12.6.68
- nvidia-nvtx-cu12 ==12.1.105
- omegaconf ==2.3.0
- opencv-python ==4.10.0.84
- opencv-python-headless ==4.10.0.84
- orjson ==3.10.7
- packaging ==24.1
- pandas ==2.2.3
- pandera ==0.21.0
- parso ==0.8.4
- pexpect ==4.9.0
- pillow ==10.4.0
- prompt-toolkit ==3.0.47
- protobuf ==3.20.1
- psutil ==6.0.0
- ptyprocess ==0.7.0
- pure-eval ==0.2.3
- py-cpuinfo ==9.0.0
- pycparser ==2.22
- pydantic ==2.9.2
- pydantic-core ==2.23.4
- pydub ==0.25.1
- pygments ==2.18.0
- pyparsing ==3.1.4
- python-dateutil ==2.9.0.post0
- python-multipart ==0.0.10
- pytorchwildlife *
- pytz ==2024.2
- pyyaml ==6.0.2
- requests ==2.32.3
- rich ==13.8.1
- ruff ==0.6.7
- scikit-learn ==1.6.0
- scipy ==1.14.1
- seaborn ==0.13.2
- semantic-version ==2.10.0
- setuptools ==75.6.0
- shellingham ==1.5.4
- six ==1.16.0
- sniffio ==1.3.1
- soundfile ==0.12.1
- stack-data ==0.6.3
- starlette ==0.38.6
- supervision ==0.23.0
- sympy ==1.13.3
- tensorboard ==2.17.1
- tensorboard-data-server ==0.7.2
- termcolor ==2.4.0
- thop ==0.1.1
- threadpoolctl ==3.5.0
- tomlkit ==0.12.0
- torch ==2.4.1
- torchaudio ==2.4.1
- torchvision ==0.19.1
- tqdm ==4.66.5
- traitlets ==5.14.3
- triton ==3.0.0
- typeguard ==4.4.1
- typer ==0.12.5
- typing-extensions ==4.12.2
- typing-inspect ==0.9.0
- tzdata ==2024.2
- ultralytics ==8.2.100
- ultralytics-thop ==2.0.8
- ultralytics-yolov5 ==0.1.1
- urllib3 ==2.2.3
- uvicorn ==0.30.6
- wcwidth ==0.2.13
- websockets ==12.0
- werkzeug ==3.0.4
- wget ==3.2
- wrapt ==1.17.0
- Pillow *
- chardet *
- gradio *
- mkdocs *
- mkdocs-get-deps *
- mkdocs-material *
- mkdocs-material-extensions *
- mkdocstrings *
- mkdocstrings-python *
- pymdown-extensions *
- scikit-learn *
- setuptools *
- supervision ==0.23.0
- timm *
- torch *
- torchaudio *
- torchvision *
- tqdm *
- ultralytics *
- wget *
- yolov5 *
- Pillow *
- chardet *
- gradio *
- scikit-learn *
- setuptools *
- supervision ==0.23.0
- timm *
- torch *
- torchaudio *
- torchvision *
- tqdm *
- ultralytics *
- wget *
- yolov5 *
Score: 18.307070918329128