https://github.com/sverrenystad/power-predictor

Using Machine Learning for time series forecasting of photovoltaic measurement for solar systems based on weather features
https://github.com/sverrenystad/power-predictor

Keywords

automl catboost exploratory-data-analysis feature-engineering feature-selection gradient-boosting kaggle-competition lstm machine-learning prophet-model random-forest regression renewable-energy solar-energy stacking time-series-forecasting xgboost

Keywords from Contributors

archiving measur transforms conversion observation animals generic compose optimize threads

Last synced: 11 months ago
JSON representation

Acceptance Criteria

Repository metadata

Using Machine Learning for time series forecasting of photovoltaic measurement for solar systems based on weather features


Owner metadata


GitHub Events

Total
Last Year

Committers metadata

Last synced: 12 months ago

Total Commits: 376
Total Committers: 7
Avg Commits per committer: 53.714
Development Distribution Score (DDS): 0.311

Commits in past year: 376
Committers in past year: 7
Avg Commits per committer in past year: 53.714
Development Distribution Score (DDS) in past year: 0.311

Name Email Commits
Sverre Nystad s****d@g****m 259
Gunnar Nystad n****r@h****o 80
Sverre Nystad 8****d 16
Gunnar g****y@s****o 8
Sverre Nystad s****s@s****o 7
pskoland p****d@g****m 5
dependabot[bot] 4****] 1

Committer domains:


Issue and Pull Request metadata

Last synced: over 1 year ago

Total issues: 51
Total pull requests: 119
Average time to close issues: 26 days
Average time to close pull requests: 17 days
Total issue authors: 3
Total pull request authors: 3
Average comments per issue: 1.51
Average comments per pull request: 0.64
Merged pull request: 7
Bot issues: 0
Bot pull requests: 114

Past year issues: 51
Past year pull requests: 119
Past year average time to close issues: 26 days
Past year average time to close pull requests: 17 days
Past year issue authors: 3
Past year pull request authors: 3
Past year average comments per issue: 1.51
Past year average comments per pull request: 0.64
Past year merged pull request: 7
Past year bot issues: 0
Past year bot pull requests: 114

More stats: https://issues.ecosyste.ms/repositories/lookup?url=https://github.com/sverrenystad/power-predictor

Top Issue Authors

  • SverreNystad (39)
  • Gunnar2908 (10)
  • pskoland (2)

Top Pull Request Authors

  • dependabot[bot] (114)
  • SverreNystad (3)
  • Gunnar2908 (2)

Top Issue Labels

  • enhancement (4)
  • help wanted (4)
  • bug (4)
  • epic (2)

Top Pull Request Labels

  • dependencies (114)

Dependencies

.github/workflows/python-package.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v3 composite
  • codecov/codecov-action v3 composite
requirements.txt pypi
  • Babel ==2.12.1
  • Jinja2 ==3.1.2
  • MarkupSafe ==2.1.3
  • Pillow ==10.0.1
  • PyYAML ==6.0.1
  • Pygments ==2.16.1
  • QtPy ==2.4.0
  • Send2Trash ==1.8.2
  • SimpleWebSocketServer ==0.1.2
  • anyio ==4.0.0
  • argon2-cffi ==23.1.0
  • argon2-cffi-bindings ==21.2.0
  • arrow ==1.2.3
  • asttokens ==2.4.0
  • async-lru ==2.0.4
  • attrs ==23.1.0
  • backcall ==0.2.0
  • beautifulsoup4 ==4.12.2
  • bleach ==6.0.0
  • certifi ==2023.7.22
  • cffi ==1.15.1
  • charset-normalizer ==3.2.0
  • colorama ==0.4.6
  • comm ==0.1.4
  • contourpy ==1.1.1
  • coverage ==7.3.1
  • cycler ==0.11.0
  • debugpy ==1.8.0
  • decorator ==5.1.1
  • defusedxml ==0.7.1
  • docutils ==0.20.1
  • exceptiongroup ==1.1.3
  • executing ==1.2.0
  • fastjsonschema ==2.18.0
  • filelock ==3.12.4
  • fonttools ==4.42.1
  • fqdn ==1.5.1
  • idna ==3.4
  • importlib-metadata ==6.8.0
  • importlib-resources ==6.1.0
  • iniconfig ==2.0.0
  • ipykernel ==6.25.2
  • ipython ==8.15.0
  • ipython-genutils ==0.2.0
  • ipywidgets ==8.1.1
  • isoduration ==20.11.0
  • jaraco.classes ==3.3.0
  • jedi ==0.19.0
  • json5 ==0.9.14
  • jsonpointer ==2.4
  • jsonschema ==4.19.1
  • jsonschema-specifications ==2023.7.1
  • jupyter ==1.0.0
  • jupyter-console ==6.6.3
  • jupyter-events ==0.7.0
  • jupyter-lsp ==2.2.0
  • jupyter_client ==8.3.1
  • jupyter_core ==5.3.1
  • jupyter_server ==2.7.3
  • jupyter_server_terminals ==0.4.4
  • jupyterlab ==4.0.6
  • jupyterlab-pygments ==0.2.2
  • jupyterlab-widgets ==3.0.9
  • jupyterlab_server ==2.25.0
  • kaggle ==1.5.16
  • keyring ==24.2.0
  • kiwisolver ==1.4.5
  • markdown-it-py ==3.0.0
  • matplot ==0.1.9
  • matplotlib ==3.8.0
  • matplotlib-inline ==0.1.6
  • mdurl ==0.1.2
  • mistune ==3.0.1
  • more-itertools ==10.1.0
  • mpmath ==1.3.0
  • nbclient ==0.8.0
  • nbconvert ==7.8.0
  • nbformat ==5.9.2
  • nest-asyncio ==1.5.8
  • networkx ==3.1
  • nh3 ==0.2.14
  • notebook ==7.0.4
  • notebook_shim ==0.2.3
  • numpy ==1.26.0
  • overrides ==7.4.0
  • packaging ==23.1
  • pandas ==2.1.1
  • pandocfilters ==1.5.0
  • parso ==0.8.3
  • pickleshare ==0.7.5
  • pkginfo ==1.9.6
  • platformdirs ==3.10.0
  • pluggy ==1.3.0
  • prometheus-client ==0.17.1
  • prompt-toolkit ==3.0.39
  • psutil ==5.9.5
  • pure-eval ==0.2.2
  • pyarrow ==14.0.1
  • pycparser ==2.21
  • pyloco ==0.0.139
  • pyparsing ==3.1.1
  • pytest ==7.4.2
  • pytest-cov ==4.1.0
  • python-dateutil ==2.8.2
  • python-json-logger ==2.0.7
  • python-slugify ==8.0.1
  • pytz ==2023.3.post1
  • pywinpty ==2.0.11
  • pyzmq ==25.1.1
  • qtconsole ==5.4.4
  • readme-renderer ==42.0
  • referencing ==0.30.2
  • requests ==2.31.0
  • requests-toolbelt ==1.0.0
  • rfc3339-validator ==0.1.4
  • rfc3986 ==2.0.0
  • rfc3986-validator ==0.1.1
  • rich ==13.5.3
  • rpds-py ==0.10.3
  • seaborn ==0.12.2
  • six ==1.16.0
  • sniffio ==1.3.0
  • soupsieve ==2.5
  • stack-data ==0.6.2
  • sympy ==1.12
  • terminado ==0.17.1
  • text-unidecode ==1.3
  • tinycss2 ==1.2.1
  • tomli ==2.0.1
  • torch ==2.0.1
  • tornado ==6.3.3
  • tqdm ==4.66.1
  • traitlets ==5.10.0
  • twine ==4.0.2
  • typing ==3.7.4.3
  • typing_extensions ==4.8.0
  • tzdata ==2023.3
  • uri-template ==1.3.0
  • urllib3 ==2.0.5
  • ushlex ==0.99.1
  • wcwidth ==0.2.6
  • webcolors ==1.13
  • webencodings ==0.5.1
  • websocket-client ==1.6.3
  • widgetsnbextension ==4.0.9
  • zipp ==3.17.0

Score: 5.529429087511423