A curated list of open technology projects to sustain a stable climate, energy supply, biodiversity and natural resources.

BreizhCrops

A Satellite Time Series Dataset for Crop Type Identification.
https://github.com/dl4sits/BreizhCrops

Category: Consumption
Sub Category: Agriculture and Nutrition

Last synced: about 13 hours ago
JSON representation

Repository metadata

A Satellite Time Series Dataset for Crop Type Identification

readme.md

BreizhCrops:

A Time Series Dataset for Crop Type Mapping

Check our Breizhcrops Tutorial Colab Notebook for quick hands-on examples.

Installation

Linux and macOS

Install Breizhcrops as python package from PyPI!

pip install breizhcrops

Windows

If you use Windows, execute these lines.

git clone https://github.com/dl4sits/BreizhCrops.git
pip install torch==1.6.0 -f https://download.pytorch.org/whl/torch_stable.html
conda install gdal fiona geopandas
pip install .

Getting Started

This minimal working example

# import package
import breizhcrops as bzh

# initialize and download FRH04 data
dataset = bzh.BreizhCrops("frh04")

# get data sample
x, y, field_id = dataset[0]

# load pretrained model
model = bzh.models.pretrained("Transformer")

# create a batch of batchsize 1
x = x.unsqueeze(0)

# perform inference
y_pred = model(x)

downloads the FRH04 dataset partition (used for evaluation), loads a pretrained model and performs a prediction on the first sample.

mimimum working example

Furthermore, for a detailed data analysis you can check the Hands-on Tutorial on Time Series. This is a Jupyter Notebook for timeseries data exploration with BreizhCrops benchmark.

Train a model

Train a model via the example script train.py

python train.py TransformerEncoder --learning-rate 0.001 --weight-decay 5e-08 --preload-ram

This script uses the default model parameters from breizhcrops.models.TransformerModel.
When training multiple epochs, the --preload-ram flag speeds up training significantly

Acknowledgements

The model implementations from this repository are based on the following papers and github repositories.

The raw label data originates from

Reference

This work will be published in the proceedings of ISPRS Archives 2020. Preprint available on ArXiv

@article{breizhcrops2020,
  title={BreizhCrops: A Time Series Dataset for Crop Type Mapping},
  author={Ru{\ss}wurm, Marc and Pelletier, Charlotte and Zollner, Maximilian and Lef{\`e}vre, S{\'e}bastien and K{\"o}rner, Marco},
  journal={International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences ISPRS (2020)},
  year={2020}
}

ISPRS virtual congress video can be found here

ICML workshop 2019


A previous version (see workshop website or arxiv version 1) was presented at the
presented at the ICML 2019 Time Series workshop, Long Beach, USA
ICML workshop contributions do not appear in the ICML proceedings.


Owner metadata


GitHub Events

Total
Last Year

Committers metadata

Last synced: 8 days ago

Total Commits: 217
Total Committers: 4
Avg Commits per committer: 54.25
Development Distribution Score (DDS): 0.244

Commits in past year: 0
Committers in past year: 0
Avg Commits per committer in past year: 0.0
Development Distribution Score (DDS) in past year: 0.0

Name Email Commits
Marc Rußwurm m****m@t****e 164
Maximilian Zollner m****r@t****e 44
Charlotte P c****r@u****r 8
Marco Körner m****r@t****e 1

Committer domains:


Issue and Pull Request metadata

Last synced: 1 day ago

Total issues: 35
Total pull requests: 4
Average time to close issues: 19 days
Average time to close pull requests: about 9 hours
Total issue authors: 14
Total pull request authors: 3
Average comments per issue: 0.97
Average comments per pull request: 0.25
Merged pull request: 4
Bot issues: 0
Bot pull requests: 0

Past year issues: 2
Past year pull requests: 0
Past year average time to close issues: N/A
Past year average time to close pull requests: N/A
Past year issue authors: 1
Past year pull request authors: 0
Past year average comments per issue: 0.0
Past year average comments per pull request: 0
Past year merged pull request: 0
Past year bot issues: 0
Past year bot pull requests: 0

More stats: https://issues.ecosyste.ms/repositories/lookup?url=https://github.com/dl4sits/BreizhCrops

Top Issue Authors

  • MarcCoru (15)
  • charlotte-pel (4)
  • Luffy2Github (3)
  • JunwenBai (2)
  • DivinorWieldor (2)
  • gsp2188 (1)
  • burcsuslu (1)
  • stienheremans (1)
  • wakame1367 (1)
  • ec-a (1)
  • GenghisYoung233 (1)
  • rongtongxueya (1)
  • ankitpatnala (1)
  • suredream (1)

Top Pull Request Authors

  • maxzoll (2)
  • MarcCoru (1)
  • charlotte-pel (1)

Top Issue Labels

  • enhancement (1)

Top Pull Request Labels


Package metadata

pypi.org: breizhcrops

A Satellite Time Series Dataset for Crop Type Identification

  • Homepage: http://github.com/dl4sits/breizhcrops
  • Documentation: https://breizhcrops.readthedocs.io/
  • Licenses: MIT
  • Latest release: 0.0.4.1 (published almost 3 years ago)
  • Last Synced: 2025-04-26T13:31:58.111Z (1 day ago)
  • Versions: 14
  • Dependent Packages: 0
  • Dependent Repositories: 4
  • Downloads: 501 Last month
  • Rankings:
    • Stargazers count: 5.556%
    • Forks count: 6.708%
    • Dependent packages count: 7.31%
    • Dependent repos count: 7.649%
    • Average: 10.905%
    • Downloads: 27.304%
  • Maintainers (1)

Dependencies

requirements.txt pypi
  • geojson >=2.4.1
  • geopandas >=0.5.0
  • h5py *
  • jupyter >=1.0.0
  • matplotlib >=3.1.0
  • numpy *
  • pandas >=0.24.2
  • pytest *
  • requests *
  • scikit-learn *
  • seaborn >=0.9.0
  • torch >=1.6.0
  • tqdm >=4.32.2

Score: 12.997326093196445