env_canada

Provides access to various data sources published by Environment and Climate Change Canada.
https://github.com/michaeldavie/env_canada

Category: Sustainable Development
Sub Category: Data Catalogs and Interfaces

Keywords from Contributors

varta varta-storage

Last synced: about 23 hours ago
JSON representation

Repository metadata

Environment Canada Weather Data

README.md

Environment Canada (env_canada)

PyPI version
Snyk rating
Python Lint and Test

This package provides access to various data sources published by Environment and Climate Change Canada.

[!IMPORTANT]
If you're using the library in a Jupyter notebook, replace asyncio.run(...) with await ... in the examples below. For example:

asyncio.run(ec_en.update())

becomes

await ec_en.update()

Weather Observations and Forecasts

ECWeather provides current conditions and forecasts. It automatically determines which weather station to use based on latitude/longitude provided. It is also possible to specify a station code in multiple flexible formats:

  • Full format: "AB/s0000123" (province code and full station ID)
  • Station ID only: "s0000123" (station ID without province - province is resolved automatically)
  • Numeric only: "123" (just the station number - province is resolved automatically)

Station codes are based on those listed in this CSV file. For example:

import asyncio

from env_canada import ECWeather

# Using coordinates (automatic station selection)
ec_coords = ECWeather(coordinates=(50, -100))

# Using station ID - multiple formats supported:
ec_full = ECWeather(station_id="ON/s0000430", language="french")  # Full format
ec_station = ECWeather(station_id="s0000430")  # Station ID only
ec_numeric = ECWeather(station_id="430")  # Numeric only

asyncio.run(ec_coords.update())

# current conditions
ec_coords.conditions

# daily forecasts
ec_coords.daily_forecasts

# hourly forecasts
ec_coords.hourly_forecasts

# alerts
ec_coords.alerts

[!NOTE]
As of version 0.11.0, ECWeather automatically handles Environment Canada's new timestamped weather file URL structure (effective June 2025). The library dynamically discovers the most recent weather files, ensuring continued functionality during Environment Canada's infrastructure changes.

Weather Radar

ECRadar provides Environment Canada meteorological radar imagery.

import asyncio

from env_canada import ECRadar

radar_coords = ECRadar(coordinates=(50, -100))

# Conditions Available
animated_gif = asyncio.run(radar_coords.get_loop())
latest_png = asyncio.run(radar_coords.get_latest_frame())

Weather Maps

ECMap provides Environment Canada WMS weather map imagery with support for various meteorological layers.

import asyncio

from env_canada import ECMap

# Create a map with rain radar layer
map_coords = ECMap(coordinates=(50, -100), layer="rain")

# Get the latest image with the specified layer
latest_png = asyncio.run(map_coords.get_latest_frame())

# Get an animated GIF with the specified layer
animated_gif = asyncio.run(map_coords.get_loop())

# Customize the map appearance
custom_map = ECMap(
    coordinates=(50, -100),
    layer="snow",
    width=1200,
    height=800,
    radius=300,
    layer_opacity=80,
    legend=True,
    timestamp=True,
    language="french",
)

Available layers include:

  • rain: Precipitation rain radar
  • snow: Precipitation snow radar
  • precip_type: Surface precipitation type

Additional configuration options:

  • width/height: Image dimensions (default: 800x800)
  • radius: Map radius in km around coordinates (default: 200km)
  • layer_opacity: Layer transparency 0-100% (default: 65%)
  • legend: Show legend (default: True)
  • timestamp: Show timestamp (default: True)
  • language: "english" or "french" (default: "english")

Note: ECMap automatically discovers available legend styles from Environment Canada's WMS capabilities, ensuring compatibility with any future style changes.

Air Quality Health Index (AQHI)

ECAirQuality provides Environment Canada air quality data.

import asyncio

from env_canada import ECAirQuality

aqhi_coords = ECAirQuality(coordinates=(50, -100))

asyncio.run(aqhi_coords.update())

# Data available
aqhi_coords.current
aqhi_coords.forecasts

Water Level and Flow

ECHydro provides Environment Canada hydrometric data.

import asyncio

from env_canada import ECHydro

hydro_coords = ECHydro(coordinates=(50, -100))

asyncio.run(hydro_coords.update())

# Data available
hydro_coords.measurements

Historical Weather Data

ECHistorical provides historical daily weather data.
The ECHistorical object is instantiated with a station ID, year, language, format (one of xml or csv) and granularity (hourly, daily data).
Once updated asynchronously, historical weather data is contained with the station_data property. If xml is requested, station_data will appear in a dictionary form. If csv is requested, station_data will contain a CSV-readable buffer. For example:

import asyncio

from env_canada import ECHistorical
from env_canada.ec_historical import get_historical_stations

# search for stations, response contains station_ids
coordinates = [53.916944, -122.749444]  # [lat, long]

# coordinates: [lat, long]
# radius: km
# limit: response limit, value one of [10, 25, 50, 100]
# The result contains station names and ID values.
stations = asyncio.run(get_historical_stations(coordinates, radius=200, limit=100))

ec_en_xml = ECHistorical(station_id=31688, year=2020, language="english", format="xml")
ec_fr_xml = ECHistorical(station_id=31688, year=2020, language="french", format="xml")
ec_en_csv = ECHistorical(station_id=31688, year=2020, language="english", format="csv")
ec_fr_csv = ECHistorical(station_id=31688, year=2020, language="french", format="csv")

# timeframe argument can be passed to change the granularity
# timeframe=1 hourly (need to create of for every month in that case, use ECHistoricalRange to handle it automatically)
# timeframe=2 daily (default)
ec_en_xml = ECHistorical(
    station_id=31688, year=2020, month=1, language="english", format="xml", timeframe=1
)
ec_en_csv = ECHistorical(
    station_id=31688, year=2020, month=1, language="english", format="csv", timeframe=1
)

asyncio.run(ec_en_xml.update())
asyncio.run(ec_en_csv.update())

# metadata describing the station
ec_en_xml.metadata

# historical weather data, in dictionary form
ec_en_xml.station_data

# csv-generated responses return csv-like station data
import pandas as pd

df = pd.read_csv(ec_en_csv.station_data)

ECHistoricalRange provides historical weather data within a specific range and handles the update by itself.

The ECHistoricalRange object is instantiated with at least a station ID and a daterange.
One could add language, and granularity (hourly, daily (default)).

The data can then be used as pandas DataFrame, XML (requires pandas >=1.3.0) and csv

For example :

import pandas as pd
import asyncio
from env_canada import ECHistoricalRange
from env_canada.ec_historical import get_historical_stations
from datetime import datetime

coordinates = ["48.508333", "-68.467667"]

stations = pd.DataFrame(
    asyncio.run(
        get_historical_stations(
            coordinates, start_year=2022, end_year=2022, radius=200, limit=100
        )
    )
).T

ec = ECHistoricalRange(
    station_id=int(stations.iloc[0, 2]),
    timeframe="daily",
    daterange=(datetime(2022, 7, 1, 12, 12), datetime(2022, 8, 1, 12, 12)),
)

ec.get_data()

# yield an XML formated str.
# For more options, use ec.to_xml(*arg, **kwargs) with pandas options
ec.xml

# yield an CSV formated str.
# For more options, use ec.to_csv(*arg, **kwargs) with pandas options
ec.csv

In this example ec.df will be:

Date/Time Longitude (x) Latitude (y) Station Name Climate ID Year Month Day Data Quality Max Temp (°C) Max Temp Flag Min Temp (°C) Min Temp Flag Mean Temp (°C) Mean Temp Flag Heat Deg Days (°C) Heat Deg Days Flag Cool Deg Days (°C) Cool Deg Days Flag Total Rain (mm) Total Rain Flag Total Snow (cm) Total Snow Flag Total Precip (mm) Total Precip Flag Snow on Grnd (cm) Snow on Grnd Flag Dir of Max Gust (10s deg) Dir of Max Gust Flag Spd of Max Gust (km/h) Spd of Max Gust Flag
2022-07-02 -68,47 48,51 POINTE-AU-PERE (INRS) 7056068 2022 7 2 22,8 12,5 17,7 0,3 0 0 26 37
2022-07-03 -68,47 48,51 POINTE-AU-PERE (INRS) 7056068 2022 7 3 21,7 10,1 15,9 2,1 0 0,4 28 50
2022-07-31 -68,47 48,51 POINTE-AU-PERE (INRS) 7056068 2022 7 31 23,5 14,1 18,8 0 0,8 0 23 31
2022-08-01 -68,47 48,51 POINTE-AU-PERE (INRS) 7056068 2022 8 1 23 15 19 0 1 0 21 35

One should note that july 1st is excluded as the time provided contains specific hours, so it yields only data after or at exactly
the time provided.

To have all the july 1st data in that case, one can provide a datarange without time: datetime(2022, 7, 7) instead
of datetime(2022, 7, 1, 12, 12)

License

The code is available under terms of MIT License


Owner metadata


GitHub Events

Total
Last Year

Committers metadata

Last synced: 12 days ago

Total Commits: 333
Total Committers: 20
Avg Commits per committer: 16.65
Development Distribution Score (DDS): 0.3

Commits in past year: 49
Committers in past year: 6
Avg Commits per committer in past year: 8.167
Development Distribution Score (DDS) in past year: 0.592

Name Email Commits
michaeldavie m****e@g****m 233
Glenn Waters g****n@w****a 45
Brian Fitzgerald f****b 14
Glenn Waters g****s@g****m 10
lletac l****c@3****a 8
JM Lopez j****z@u****a 4
MrDizzystick M****k 3
snyk-bot s****t@s****o 3
Marc-Antoine Ruel m****l@g****m 2
Andreas Billmeier b@e****t 1
Daniel Nicoara d****a@g****m 1
Darren Wiens d****s@g****m 1
Fabian Affolter f****n@a****h 1
Marc Mueller 3****p 1
Oliver Gründel 4****l 1
Rob Leveille r****e@g****m 1
Shixian Sheng s****2@f****u 1
everett e****r@g****m 1
marawan31 m****1@g****m 1
stevendinardo 1****o 1

Committer domains:


Issue and Pull Request metadata

Last synced: 15 days ago

Total issues: 65
Total pull requests: 79
Average time to close issues: 3 months
Average time to close pull requests: 7 days
Total issue authors: 43
Total pull request authors: 20
Average comments per issue: 2.86
Average comments per pull request: 0.94
Merged pull request: 70
Bot issues: 0
Bot pull requests: 0

Past year issues: 7
Past year pull requests: 34
Past year average time to close issues: about 4 hours
Past year average time to close pull requests: 3 days
Past year issue authors: 6
Past year pull request authors: 6
Past year average comments per issue: 2.0
Past year average comments per pull request: 0.47
Past year merged pull request: 29
Past year bot issues: 0
Past year bot pull requests: 0

More stats: https://issues.ecosyste.ms/repositories/lookup?url=https://github.com/michaeldavie/env_canada

Top Issue Authors

  • gwww (8)
  • fitzb (3)
  • glassbase (3)
  • alexandery (3)
  • ikifar2012 (2)
  • michaeldavie (2)
  • cpw (2)
  • jm66 (2)
  • Diode-exe (2)
  • deftdawg (2)
  • PhilBaobab (2)
  • A-c0rN (2)
  • maruel (2)
  • rcblackwell (1)
  • AR1985 (1)

Top Pull Request Authors

  • gwww (32)
  • michaeldavie (14)
  • fitzb (6)
  • jm66 (4)
  • maruel (3)
  • cdce8p (2)
  • everettsp (2)
  • KPCOFGS (2)
  • Biorix (2)
  • ogruendel (2)
  • darrenwiens (1)
  • infectedroot (1)
  • MrDizzystick (1)
  • onkelbeh (1)
  • marawan31 (1)

Top Issue Labels

  • enhancement (4)
  • bug (2)

Top Pull Request Labels


Package metadata

pypi.org: env-canada

A package to access meteorological data from Environment Canada

  • Homepage: https://github.com/michaeldavie/env_canada
  • Documentation: https://github.com/michaeldavie/env_canada
  • Licenses: mit
  • Latest release: 0.12.2 (published 15 days ago)
  • Last Synced: 2025-12-11T03:02:15.177Z (15 days ago)
  • Versions: 111
  • Dependent Packages: 2
  • Dependent Repositories: 19
  • Downloads: 17,567 Last month
  • Docker Downloads: 757,189,253
  • Rankings:
    • Docker downloads count: 0.168%
    • Dependent packages count: 3.245%
    • Dependent repos count: 3.358%
    • Downloads: 3.653%
    • Average: 4.724%
    • Stargazers count: 8.313%
    • Forks count: 9.608%
  • Maintainers (1)

Dependencies

.github/workflows/codeql-analysis.yml actions
  • actions/checkout v3 composite
  • github/codeql-action/analyze v2 composite
  • github/codeql-action/autobuild v2 composite
  • github/codeql-action/init v2 composite
.github/workflows/python-app.yml actions
  • actions/checkout v2 composite
  • actions/setup-python v2 composite
.github/workflows/python-publish.yml actions
  • actions/checkout v2 composite
  • actions/setup-python v2 composite
requirements.txt pypi
  • Pillow *
  • aiohttp *
  • defusedxml *
  • geopy *
  • imageio *
  • lxml *
  • pandas >=1.3.0
  • python-dateutil *
  • voluptuous *
setup.py pypi
  • Pillow *
  • aiohttp *
  • defusedxml *
  • geopy *
  • imageio *
  • lxml *
  • pandas >=1.3.0
  • python-dateutil *
  • voluptuous *

Score: 28.094839704244745