CNN-SoilTextureClassification
One-dimensional convolutional neural networks (CNN) for the classification of soil texture based on hyperspectral data.
https://github.com/felixriese/CNN-SoilTextureClassification
Category: Natural Resources
Sub Category: Soil and Land
Keywords
1d-cnn classification cnn conference convolutional-neural-networks hyperspectral-data publication publication-code soil-texture-classification
Last synced: about 11 hours ago
JSON representation
Repository metadata
1-dimensional convolutional neural networks (CNN) for the classification of soil texture based on hyperspectral data
- Host: GitHub
- URL: https://github.com/felixriese/CNN-SoilTextureClassification
- Owner: felixriese
- License: mit
- Created: 2019-01-15T11:28:31.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2022-05-09T16:39:41.000Z (almost 3 years ago)
- Last Synced: 2025-04-18T20:13:41.981Z (9 days ago)
- Topics: 1d-cnn, classification, cnn, conference, convolutional-neural-networks, hyperspectral-data, publication, publication-code, soil-texture-classification
- Language: Python
- Homepage: https://doi.org/10.5281/zenodo.2540718
- Size: 32.2 KB
- Stars: 60
- Watchers: 4
- Forks: 16
- Open Issues: 0
- Releases: 6
-
Metadata Files:
- Readme: README.md
- License: LICENSE
- Citation: CITATION.cff
README.md
CNN Soil Texture Classification
1-dimensional convolutional neural networks (CNN) for the classification of
soil texture based on hyperspectral data.
Description
We present 1-dimensional (1D) convolutional neural networks (CNN) for the
classification of soil texture based on hyperspectral data. The following CNN
models are included:
LucasCNN
LucasResNet
LucasCoordConv
HuEtAl
: 1D CNN by Hu et al. (2015), DOI: 10.1155/2015/258619LiuEtAl
: 1D CNN by Liu et al. (2018), DOI: 10.3390/s18093169
These 1D CNNs are optimized for the soil texture classification based on the hyperspectral data of the Land Use/Cover Area Frame Survey (LUCAS) topsoil dataset. It is available here. For more information have a look in our publication (see below).
Introducing paper: arXiv:1901.04846
Licence: MIT
Authors:
Citation of the code and the paper: see below and in the bibtex file
Requirements
- see Dockerfile
- download
coord.py
from titu1994/keras-coordconv based on arXiv:1807.03247
Setup
git clone https://github.com/felixriese/CNN-SoilTextureClassification.git
cd CNN-SoilTextureClassification/
wget https://raw.githubusercontent.com/titu1994/keras-coordconv/c045e3f1ff7dabd4060f515e4b900263eddf1723/coord.py .
Usage
You can import the Keras models like that:
import cnn_models as cnn
model = cnn.getKerasModel("LucasCNN")
model.compile(...)
Example code is given in the lucas_classification.py
. You can use it like that:
from lucas_classification import lucas_classification
score = lucas_classification(
data=[X_train, X_val, y_train, y_val],
model_name="LucasCNN",
batch_size=32,
epochs=200,
random_state=42)
print(score)
Citation
[1] F. M. Riese, "CNN Soil Texture Classification",
DOI:10.5281/zenodo.2540718, 2019.
@misc{riese2019cnn,
author = {Riese, Felix~M.},
title = {{CNN Soil Texture Classification}},
year = {2019},
publisher = {Zenodo},
DOI = {10.5281/zenodo.2540718},
}
Code is Supplementary Material to
[2] F. M. Riese and S. Keller, "Soil Texture Classification with 1D
Convolutional Neural Networks based on Hyperspectral Data", ISPRS Annals of
Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. IV-2/W5,
pp. 615-621, 2019. DOI:10.5194/isprs-annals-IV-2-W5-615-2019
@article{riese2019soil,
author = {Riese, Felix~M. and Keller, Sina},
title = {Soil Texture Classification with 1D Convolutional Neural Networks based on Hyperspectral Data},
year = {2019},
journal = {ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences},
volume = {IV-2/W5},
pages = {615--621},
doi = {10.5194/isprs-annals-IV-2-W5-615-2019},
}
[3] F. M. Riese, "LUCAS Soil Texture Processing Scripts," Zenodo, 2020.
DOI:0.5281/zenodo.3871431
[4] Felix M. Riese. "Development and Applications of Machine Learning Methods
for Hyperspectral Data." PhD thesis. Karlsruhe, Germany: Karlsruhe Institute of
Technology (KIT), 2020. DOI:10.5445/IR/1000120067
Citation (CITATION.cff)
cff-version: 1.2.0 message: "If you use this software, please cite both the article from preferred-citation and the software itself." authors: - family-names: Riese given-names: Felix M. orcid: https://orcid.org/0000-0003-0596-9585 title: "CNN Soil Texture Classification" version: 1.1 doi: "10.5281/zenodo.2540718" date-released: 2020-06-09 repository-code: https://github.com/felixriese/CNN-SoilTextureClassification license: MIT preferred-citation: authors: - family-names: Riese given-names: Felix M. - family-names: Keller given-names: Sina title: "Soil Texture Classification with 1D Convolutional Neural Networks based on Hyperspectral Data" type: article year: 2019 doi: "10.5194/isprs-annals-IV-2-W5-615-2019" journal: "ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences" volume: IV-2/W5 url: https://www.mdpi.com/2072-4292/12/1/7 pages: "615-621"
Owner metadata
- Name: Dr. Felix Riese
- Login: felixriese
- Email:
- Kind: user
- Description: Ph.D. & MBA | Head of Product | Physicist with 9+ Years in Data Science and Machine Learning | First-Principles Thinking
- Website: felixriese.de
- Location: Munich, Germany
- Twitter:
- Company: @Peter-Park-Systems-GmbH
- Icon url: https://avatars.githubusercontent.com/u/17081863?u=4ceafc223f4a4b639ac9518491af4df0b8485df7&v=4
- Repositories: 17
- Last ynced at: 2024-06-11T15:39:01.250Z
- Profile URL: https://github.com/felixriese
GitHub Events
Total
- Watch event: 3
- Fork event: 1
Last Year
- Watch event: 3
- Fork event: 1
Committers metadata
Last synced: 7 days ago
Total Commits: 40
Total Committers: 2
Avg Commits per committer: 20.0
Development Distribution Score (DDS): 0.3
Commits in past year: 0
Committers in past year: 0
Avg Commits per committer in past year: 0.0
Development Distribution Score (DDS) in past year: 0.0
Name | Commits | |
---|---|---|
Felix Riese | f****e@k****u | 28 |
Felix M. Riese | m****l@f****e | 12 |
Committer domains:
- felixriese.de: 1
- kit.edu: 1
Issue and Pull Request metadata
Last synced: 1 day ago
Total issues: 1
Total pull requests: 2
Average time to close issues: over 1 year
Average time to close pull requests: 7 minutes
Total issue authors: 1
Total pull request authors: 1
Average comments per issue: 3.0
Average comments per pull request: 0.5
Merged pull request: 2
Bot issues: 0
Bot pull requests: 0
Past year issues: 0
Past year pull requests: 0
Past year average time to close issues: N/A
Past year average time to close pull requests: N/A
Past year issue authors: 0
Past year pull request authors: 0
Past year average comments per issue: 0
Past year average comments per pull request: 0
Past year merged pull request: 0
Past year bot issues: 0
Past year bot pull requests: 0
Top Issue Authors
- wellescastro (1)
Top Pull Request Authors
- felixriese (2)
Top Issue Labels
- enhancement (1)
Top Pull Request Labels
Dependencies
- codecov *
- matplotlib *
- pydot *
- pytest >=6.0.0
- pytest-cov *
- requests *
- scikit-learn *
- seaborn *
- tensorflow >=2.5.0
Score: 4.787491742782046