Particula
An Python-based aerosol simulator. Particula captures gas-particle interactions, transformations, and dynamics to power predictive aerosol science.
https://github.com/uncscode/particula
Category: Atmosphere
Sub Category: Atmospheric Chemistry and Aerosol
Keywords
aerosol atmosphere model package particle research science simulation
Keywords from Contributors
climate
Last synced: about 23 hours ago
JSON representation
Repository metadata
Particula is an open-source, Python-based aerosol simulator. Particula captures gas-particle interactions, transformations, and dynamics to power predictive aerosol science.
- Host: GitHub
- URL: https://github.com/uncscode/particula
- Owner: uncscode
- License: mit
- Created: 2021-10-31T15:31:16.000Z (about 4 years ago)
- Default Branch: main
- Last Pushed: 2025-12-04T02:40:57.000Z (22 days ago)
- Last Synced: 2025-12-05T07:43:59.090Z (21 days ago)
- Topics: aerosol, atmosphere, model, package, particle, research, science, simulation
- Language: Python
- Homepage: https://uncscode.github.io/particula/
- Size: 685 MB
- Stars: 11
- Watchers: 0
- Forks: 10
- Open Issues: 9
- Releases: 33
-
Metadata Files:
- Readme: readme.md
- License: license
- Citation: citation
- Codeowners: .github/CODEOWNERS
- Agents: AGENTS.md
readme.md
Overview
Particula is a Python-based aerosol particle simulator. Its goal is to provide a
robust aerosol simulation (including both gas and particle phases) that can be
used to answer scientific questions arising from experiments and research
endeavors.
The Particula website
https://uncscode.github.io/particula
contains the API reference, how-to guides, and tutorials.
PyPI Installation
If your Python environment is already set up, you can install
particula via pip using the following
command:
pip install particula
Or install via conda:
conda install -c conda-forge particula
Dynamics and wall loss
The particula.dynamics namespace collects time-dependent processes such as
dilution, condensation, coagulation, and wall loss.
For wall loss there are two complementary APIs:
- Function-based rates (legacy):
particula.dynamics.get_spherical_wall_loss_rate(...)particula.dynamics.get_rectangle_wall_loss_rate(...)
- Strategy-based API (new):
particula.dynamics.WallLossStrategy– abstract base class for wall loss
models.particula.dynamics.SphericalWallLossStrategy– concrete strategy for
spherical chambers.
Wall loss strategies operate directly on
particula.particles.representation.ParticleRepresentation instances and
support all three distribution types: "discrete", "continuous_pdf", and
"particle_resolved".
import particula as par
# Assume `particle` is a ParticleRepresentation
wall_loss = par.dynamics.SphericalWallLossStrategy(
wall_eddy_diffusivity=0.001, # m^2/s
chamber_radius=0.5, # m
distribution_type="discrete",
)
rate = wall_loss.rate(
particle=particle,
temperature=298.15,
pressure=101325.0,
)
particle = wall_loss.step(
particle=particle,
temperature=298.15,
pressure=101325.0,
time_step=1.0,
)
See the online documentation for more examples and background theory.
Citation (citation)
# This CITATION.cff file was generated with cffinit.
# Visit https://bit.ly/cffinit to generate yours today!
cff-version: 1.2.0
title: Particula
message: >-
If you use this software, please cite it using the
metadata from this file.
type: software
authors:
- given-names: Particula
family-names: Developers
doi: 10.5281/zenodo.6634653
repository-code: 'https://github.com/uncscode/particula'
url: 'https://uncscode.github.io/particula/'
license: MIT
Owner metadata
- Name: uncscode
- Login: uncscode
- Email:
- Kind: organization
- Description:
- Website:
- Location:
- Twitter:
- Company:
- Icon url: https://avatars.githubusercontent.com/u/91224023?v=4
- Repositories: 5
- Last ynced at: 2023-03-06T04:14:15.749Z
- Profile URL: https://github.com/uncscode
GitHub Events
Total
- Create event: 268
- Release event: 8
- Issues event: 172
- Watch event: 4
- Delete event: 227
- Issue comment event: 409
- Push event: 1480
- Pull request review comment event: 353
- Pull request review event: 418
- Pull request event: 269
Last Year
- Create event: 255
- Release event: 7
- Issues event: 166
- Watch event: 4
- Delete event: 216
- Issue comment event: 393
- Push event: 1417
- Pull request review comment event: 347
- Pull request review event: 410
- Pull request event: 260
Committers metadata
Last synced: 12 days ago
Total Commits: 1,540
Total Committers: 10
Avg Commits per committer: 154.0
Development Distribution Score (DDS): 0.179
Commits in past year: 897
Committers in past year: 5
Avg Commits per committer in past year: 179.4
Development Distribution Score (DDS) in past year: 0.047
| Name | Commits | |
|---|---|---|
| Kyle Gorkowski | k****w@g****m | 1265 |
| ngam | 6****m | 148 |
| dependabot[bot] | 4****] | 63 |
| Naser Mahfouz | n****z@p****v | 35 |
| wkchuang | w****7@c****u | 15 |
| sourcery-ai[bot] | 5****] | 6 |
| Naser Mahfouz | 1****z | 5 |
| copilot-swe-agent[bot] | 1****t | 1 |
| Akshay Kumar | a****0@g****m | 1 |
| Sourcery AI | 1 |
Committer domains:
- columbia.edu: 1
- pnnl.gov: 1
Issue and Pull Request metadata
Last synced: 8 days ago
Total issues: 202
Total pull requests: 497
Average time to close issues: 25 days
Average time to close pull requests: 5 days
Total issue authors: 6
Total pull request authors: 7
Average comments per issue: 0.45
Average comments per pull request: 1.67
Merged pull request: 386
Bot issues: 2
Bot pull requests: 95
Past year issues: 95
Past year pull requests: 276
Past year average time to close issues: 10 days
Past year average time to close pull requests: 2 days
Past year issue authors: 4
Past year pull request authors: 4
Past year average comments per issue: 0.25
Past year average comments per pull request: 2.04
Past year merged pull request: 218
Past year bot issues: 1
Past year bot pull requests: 15
Top Issue Authors
- Gorkowski (146)
- ngam (31)
- mahf708 (16)
- ngmahfouz (4)
- wkchuang (3)
- sourcery-ai[bot] (2)
Top Pull Request Authors
- Gorkowski (340)
- dependabot[bot] (70)
- ngam (36)
- sourcery-ai[bot] (25)
- mahf708 (15)
- wkchuang (6)
- ngmahfouz (5)
Top Issue Labels
- enhancement (75)
- bug (43)
- sourcery-ai (13)
- no-issue-activity (12)
- documentation (12)
- .data (10)
- next (4)
- analysis (4)
- .Lagrangian (4)
- Tests (3)
- .equilibria (2)
- question (2)
- wait (2)
- particlephase (1)
- .activity (1)
- release (1)
- type:complete (1)
- model:base (1)
- agent (1)
Top Pull Request Labels
- dependencies (72)
- github_actions (70)
- enhancement (69)
- documentation (66)
- codex (57)
- next (19)
- Refactor (17)
- bug (15)
- Tests (15)
- release (9)
- no-pr-activity (7)
- .data (3)
- .Lagrangian (3)
- packaging (3)
- analysis (1)
Package metadata
- Total packages: 2
-
Total downloads:
- pypi: 2,364 last-month
- Total dependent packages: 1 (may contain duplicates)
- Total dependent repositories: 1 (may contain duplicates)
- Total versions: 43
- Total maintainers: 1
pypi.org: particula
a simple, fast, and powerful particle simulator
- Homepage:
- Documentation: https://particula.readthedocs.io/
- Licenses: MIT License
- Latest release: 0.2.7 (published 23 days ago)
- Last Synced: 2025-12-16T20:08:01.568Z (9 days ago)
- Versions: 32
- Dependent Packages: 1
- Dependent Repositories: 1
- Downloads: 2,364 Last month
-
Rankings:
- Dependent packages count: 4.736%
- Average: 13.362%
- Downloads: 13.693%
- Dependent repos count: 21.657%
- Maintainers (1)
conda-forge.org: particula
Particula is a Python-based aerosol particle simulator. Its goal is to provide a robust aerosol simulation (including both gas and particle phases) that can be used to answer scientific questions arising from experiments and research endeavors.
- Homepage: https://uncscode.github.io/particula
- Licenses: MIT
- Latest release: 0.0.12 (published about 3 years ago)
- Last Synced: 2025-12-16T20:08:10.361Z (9 days ago)
- Versions: 11
- Dependent Packages: 0
- Dependent Repositories: 0
-
Rankings:
- Dependent repos count: 34.025%
- Average: 48.811%
- Dependent packages count: 51.175%
- Forks count: 51.645%
- Stargazers count: 58.398%
Dependencies
- actions/checkout v3 composite
- actions/setup-python v4.5.0 composite
- peaceiris/actions-gh-pages v3.9.2 composite
- actions/checkout v3 composite
- actions/setup-python v4.5.0 composite
- actions/checkout v3 composite
- actions/setup-python v4.5.0 composite
- pypa/gh-action-pypi-publish c7f29f7adef1a245bd91520e94867e5c6eedddcc composite
- actions/stale v7 composite
- actions/checkout v3 composite
- actions/setup-python v4.5.0 composite
- mcr.microsoft.com/vscode/devcontainers/python latest build
- hypersolver ==0.0.8
- numpy *
- pint *
- scipy *
Score: 13.067695976062021